

Ideal to Isogeny: from Qlapoti to qt-Pegasis

Isogeny Days

R. Invernizzi - joint work with many

COSIC - KU Leuven

12 sep 2025

Outline

1. Ideal to Isogeny

2. Qlapoti

3. qt-Pegasis

Ideal to isogeny

- ► Deuring correspondence
- ▶ quaternion ideals ↔ isogenies
- quaternions are fast, isogenies are slow
 - perform all computations with quaternions
 - recover isogenies at the end
- ► *largest component* of most isogeny schemes

Applications

- ► Sample a random ideal, translate it into a random isogeny
- ▶ the codomain is a random curve
 - key generation (SQIsign, PRISM, ...), commitment (SQIsign)
- compute isogenies with some properties from ideals
 - response (SQIsign, PRISM)
- quadratic case: effective class group actions (PEGASIS)
- ► how?

Ideal to Isogeny 1

- ▶ let $\operatorname{nrd}(I) = l$, $E[l] = \langle P, Q \rangle$, $\alpha \in I$
- lacktriangle write lpha(P)=aP+bQ and lpha(Q)=cP+dQ
- recover R s.t. $\alpha(R) = 0$ by linear algebra
- problem: requires l small / smooth

Ideal to Isogeny 2 (KLPT)

- ▶ given $\beta \in I$, get equivalent ideal $J = I\overline{\beta}/\text{nrd}(I)$
- same domain, same codomain, different degree (norm)
- ▶ if $\operatorname{nrd}(\beta) = N \cdot \operatorname{nrd}(I)$ then $\operatorname{nrd}(J) = N$
- ▶ look for N smooth (= 2^e): $KLPT \rightsquigarrow SQlsign v1$
- ▶ typically: N huge $(\approx p^3)$

Ideal to Isogeny 3 (QFESTA)

- lacktriangle using *HD isogenies* we can compute isogenies of degree $q(2^e-q)$
- ightharpoonup it is easy to sample ideals of norm $q(2^e-q)$
- ▶ allows to compute isogenies of *any degree*
- ightharpoonup requires $q < 2^e < p$
- does not work with a given ideal

Ideal to Isogeny 4 (Clapoti)

generalize the QFESTA equation: enough to solve

$$u \cdot \mathsf{nrd}(I_1) + v \cdot \mathsf{nrd}(I_2) = 2^e$$

where I_1, I_2 are equivalent ideals

- ightharpoonup need degree u,v isogenies: use QFESTA for that
- works for every ideal (in theory)

Ideal to Isogeny 4 (Clapoti)

- ▶ $\operatorname{nrd}(I_1)$, $\operatorname{nrd}(I_2) \approx \sqrt{p}$ at least, but $2^e < p$
- equation has a significant failure rate (2^{-8})
- ▶ SQIsign: reduce it to 2^{-60} with some tricks
- memory-heavy and still not cryptographically negligible
- fixed degree isogenies are ok but costly

Outline

1. Ideal to Isogeny

2. Qlapoti

3. qt-Pegasis

A more direct approach

- ► Clapoti solves $u \cdot \operatorname{nrd}(I_1) + v \cdot \operatorname{nrd}(I_2) = 2^e$
- we can solve $\operatorname{nrd}(I_1) + \operatorname{nrd}(I_2) = 2^e$ instead
- ▶ I_1 and I_2 are chosen *random* and *small*
- ightharpoonup unlikely to sum to $2^e \leadsto$ need to be more explicit

A more direct approach

- ightharpoonup let $n = \operatorname{nrd}(I)$
- ▶ the equation becomes $\operatorname{nrd}(\beta_1) + \operatorname{nrd}(\beta_2) = n2^e$
- write $I = \langle \alpha, n \rangle$ (many choices for α)
- $\beta_k = \gamma_k n + \gamma_k' \alpha$
- ightharpoonup simplify: $\gamma_k = a_k + \mathrm{i} b_k$ and $\gamma_k' = 1$

Solving $\mod n$

► The full equation becomes

$$n(a_1^2 + b_1^2 + a_2^2 + b_2^2) + 2a_\alpha(a_1 + a_2) + 2b_\alpha(b_1 + b_2) = 2^e - 2r$$

- first solve $2a_{\alpha}x + 2b_{\alpha}y \equiv 2^e 2r \mod n$
- ightharpoonup find a short solution (s,t) using cvp
- ightharpoonup replace $a_2=s-a_1$ and $b_2=t-b_1$
- we are left with a *sum of squares*

Improvement pt. 1

- no additional fixed degree isogenies
- ▶ 2x improvement with direct impact on current schemes

NIST level	Previous work	This work	Improvement	
I	0.434s	0.171s	$\times 2.5$	
Ш	0.849s	0.446s	x 1.9	
V	1.143s	0.515s	×2.2	

Improvement pt. 2

- ightharpoonup representation $I=\langle \alpha,n\rangle$ is not unique
- ightharpoonup many lpha to try \leadsto virtually impossible to fail

NIST Level	p	upper bound on failure rate
1	$2^{248} \cdot 5 - 1$	2^{-197}
III	$2^{376} \cdot 65 - 1$	2^{-312}
V	$2^{500} \cdot 27 - 1$	2^{-438}

Improvement pt. 2

- no need for additional curves
- much simpler code
- less memory usage (x11 to x34)
- cleaner security proofs

Credits

Qlapoti: Simple and Efficient Translation of Quaternion Ideals to Isogenies

Join work with: Giacomo Borin, Maria Corte-Real Santos, Jonathan Komada Eriksen. Marzio Mula. Sina Schaeffler and Frederik Vercauteren

Eprint: 2025/1604

Code: https://github.com/KULeuven-COSIC/Qlapoti

Outline

1. Ideal to Isogeny

2. Qlapoti

3. qt-Pegasis

Revisiting PEGASIS

- ▶ PEGASIS: effective class group actions from CSIDH
- lacksquare given an ideal $\mathfrak{a}\in\mathbb{Z}\left[rac{1+\sqrt{-p}}{2}
 ight]$ compute the corresponding isogeny
- lacktriangle based on Clapoti: solve $u\cdot n(\mathfrak{b})+v\cdot n(\mathfrak{c})=2^e$ for $\mathfrak{b},\mathfrak{c}\sim\mathfrak{a}$
- ► same issues + fixed degree isogenies are *harder*
- partially solved with Elkies algorithm and dimension 4

Revisiting PEGASIS

- ▶ goal: replace *Clapoti* with *Qlapoti*
- \blacktriangleright problem: we are working with $R=\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$
- ▶ key insight from KLaPoTi: "build" i on $E \times E$
- ightharpoonup take $\mathcal{O}=R+\mathrm{i}R$ and $\mathcal{I}=\mathfrak{a}+\mathrm{i}\mathfrak{a}$
- ightharpoonup apply Qlapoti to ${\mathcal I}$

Further optimizations

- $\triangleright \mathcal{I} = \mathfrak{a} + i\mathfrak{a}$ is far from a random ideal
- different steps can be simplified
- we can predict / control the shape of the equation
- two modular additions instead of cvp

Comparison with PEGASIS

- no Elkies isogenies
- ► 1.3x to 2.1x speedup
- much simpler algorithm
- suitable for constant time implementation
- no restriction on primes

Timings

Prime size	Step 1	Step 2	Step 3	Total	Improvement	Step 3 rt.
508	0.027	0.083	1.048	1.16	1.31x	90%
1008	0.06	0.30	2.77	3.13	1.34×	88%
1554	0.09	0.77	6.08	6.94	1.51×	87%
2031	0.55	1.36	10.3	12.17	1.75×	84%
4089	3.15	6.80	47.6	57.5	2.12x	82%

Open Questions

- shorter chains: they should exist, how do we find them?
- ightharpoonup move to dimension 2: $\mathfrak{a} + i\mathfrak{a}$ is not a random ideal
- new names: running out of c sounds, maybe Clapowtee?

Credits

qt-Pegasis: Simpler and Faster Effective Class Group Actions

Join work with: Pierrick Dartois, Jonathan Komada Eriksen and Frederik Vercauteren

eprint and code (hopefully) coming soon

Credits: Jonathan Omada KERiksen, street artist

Thanks you for your attention! Questions?