

PEGASIS: Practical Effective Class Group Actions

CRYPTO 2025 - Santa Barbara

R. Invernizzi - joint work with Dartois, Eriksen, Fouotsa, Le Merdy, Robert, Rueger, Vercauteren and Wesolowski

Group Actions

Group actions provide *quantum secure* "replacement" for DLP:

Definition (Group Action)

Given a group G and a set X, a group action $G \curvearrowright X$ is a map

$$G \times X \to X$$

 $(g, x) \mapsto g \star x$

 $(g,x) \mapsto g \star f$

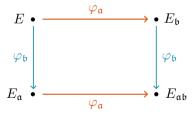
compatible with group operations in G.

Group Actions

- \blacktriangleright if $G=\mathbb{Z}$ and $X=\mathbb{F}_p^*$ then $G\curvearrowright X$ by $(g,x)\mapsto x^g$
- efficient evaluation: given (x, g) can compute $g \star x$
 - classically: exponentiation
- **vectorization**: given $(x, g \star x)$ it is hard to recover g
 - classically: DLP

Isogeny Based Group Actions: CSIDH

- ightharpoonup action of ideals of $\mathbb{Z}[\sqrt{-p}]$ on supersingular elliptic curves
- ▶ action given by *isogenies*: $\mathfrak{a} \star E = \varphi_{\mathfrak{a}}(E)$
- equivalent ideals result in the same curve



REGA vs EGA

- CSIDH can act efficiently only with smooth norm ideals
- gives a Restricted Effective Group Action (REGA) instead of EGA
- leads to problems when uniform sampling is required (e.g. *signatures*)
- CSI-FiSh / Scallop: EGA for small parameters with precomputations
- Clapoti: polynomial time framework, no practical instantiation
- KLaPoTi: Clapoti for small parameters, does not apply to CSIDH

Setup

- ightharpoonup working over base field \mathbb{F}_p
- ▶ need $p = f2^e 1$ with f small for efficiency reasons (*HD isogenies*)
- subexponential quantum attack by Kuperberg
- requires p to be 500 4000 bits (debated)

The Clapoti Framework

Unrestricted group actions in *polynomial time*:

- ightharpoonup take any ideal $\mathfrak{a}=(l,\sigma)$
- ▶ find two equivalent ideals $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}$ and integers u, v such that

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^e$$

with $2^e < p$

- ightharpoonup compute a degree u and a degree v isogeny
- ightharpoonup magically (but *efficiently*) recover $\varphi_{\mathfrak{a}}$

Problem 1: solvability of equation

- expected # solutions: $2^e/N(\mathfrak{b})N(\mathfrak{c})$
- ightharpoonup need $N(\mathfrak{b}), N(\mathfrak{c})$ as small as possible
- \triangleright a is a lattice, equivalent ideals given by short elements in a
- lacktriangleright by $\emph{Minkowski}$, smallest equivalent ideals have norm $pprox \sqrt{p}$
- ightharpoonup expected solutions $\approx 1/4f$, already low

Problem 2: isogenies of given degree

- lacktriangle degree u,v isogenies from a random curve E are conjecturally hard
- ▶ if $u = x^2 + y^2$ we have a u-isogeny

$$\Phi_u = \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : E \times E \to E \times E$$

 $ightharpoonup \Phi_u$ is a dimension 2 isogeny, so Clapoti runs in dimension 4

Problem 2: sums of squares

- ightharpoonup need u, v to be sums of squares to compute isogenies
- $ightharpoonup u = \prod p_i^{e_i}$ is a sum of squares iff for $p_i \equiv 3 \bmod 4$, e_i is even
- full factorization is too expensive
- trial division and hope leftover part is prime instead
- ▶ $u, v \approx \sqrt{p}$ → the probability of two sums of squares is $\approx 1/\log(p)^2$

Clapoti in practice

- ▶ forced to take $2^e < p$ for efficiency
- equation barely has a solution
- e.g. 97% failure rate for 4000 bit prime
- $lackbox{ } u,v$ being sums of squares reduces probability of 2-3 orders of magnitude
- success probability close to 0

Our approach

- ▶ taking out small degree isogenies solves *both* problems
- can be computed using Elkies algorithm
- ightharpoonup can evaluate $\varphi_{\mathfrak{a}}(E)$ for $\mathfrak{a}=(l,\sigma)$
- lacktriangle complexity $O(N(\mathfrak{a})) = O(l)$ so only for *small degree* isogenies

Problem 1: solvability of equation

- lacktriangle write $\mathfrak{b} = \mathfrak{b}_e \mathfrak{b}_k$ and $\mathfrak{c} = \mathfrak{c}_e \mathfrak{c}_k$ with $N(\mathfrak{b}_e)$ and $N(\mathfrak{c}_e)$ smooth
- lacktriangle apply $\mathfrak{b}_e,\mathfrak{c}_e$ using Elkies algorithm
- ightharpoonup solve $uN(\mathfrak{b}_k) + vN(\mathfrak{c}_k) = 2^e$
- \blacktriangleright # solutions $\approx N(\mathfrak{b}_e)N(\mathfrak{c}_e)/4f$, increased by $N(\mathfrak{b}_e)N(\mathfrak{c}_e)$

Problem 2: sums of squares

- ▶ for small l, $\mathfrak{a}_l = (l, \sigma)$ and $\varphi_l = \varphi_{\mathfrak{a}_l}$ has degree l
- ightharpoonup can take out from u, v small factors that are $3 \mod 4$
- \blacktriangleright heuristically, removing 3,7,11 already increases success rate $\times 3$

Rerandomization

- some ideals may still fail or take too long
- we can *rerandomize* bad ideals
- **>** solve the norm equation for \mathfrak{aa}_3 instead of \mathfrak{a}
- ightharpoonup then apply φ_3 to go back
- ▶ zero failure and more efficient in practice

Timings

		Size p (bits)

Paper	Language	500	1000	1500	2000	4000
SCALLOP	C++	35 s	750 s	-	-	-
SCALLOP-HD (2D)	Sage	88 s	1140 s	-	-	-
PEARL-SCALLOP	$C{++}$	30 s	58 s	710 s	-	-
KLaPoTi (2D)	Sage	207 s	-	-	-	-
	Rust	1.95 s	-	-	-	-
PEGASIS (4D)	Sage	1.53 s	4.21 s	10.5 s	21.3 s	121 s

PEGASIS timings breakdown

► Step 1: solve norm equation

► Step 2: small degree isogenies

► Step 3: 4D isogeny

Size p (bits)	Step 1	Step 2	Step 3	Total	Rerand.
500	0.097 s	0.48 s	0.96 s	1.53 s	0.17
1000	0.21 s	1.16 s	2.84 s	4.21 s	0.07
1500	1.19 s	2.85 s	6.49 s	10.5 s	1.53
2000	1.68 s	8.34 s	11.3 s	21.3 s	0.70
4000	15.6 s	52.8 s	53.5 s	122 s	0.41

Open questions

- Q1: can we solve $N(\mathfrak{b}) + N(\mathfrak{c}) = 2^e$ (no need for u, v)?
 - ▶ yes (coming soon qt-Pegasis)
- Q2: can we solve $N(\mathfrak{b}) + N(\mathfrak{c}) = 2^b$ for b < e?
 - ightharpoonup expect a solution for 2e/3 but don't know how to find it
- Q3: do we really need dimension 4?
 - new ideas needed!

