

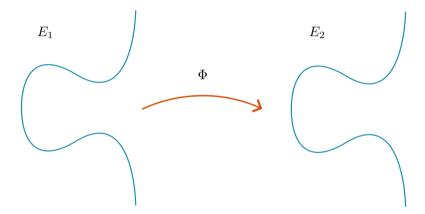
PRISM - Signatures from Large Prime Degree Isogenies

PKC 2025 - Røros

R. Invernizzi - joint work with A. Basso, G. Borin, W. Castryck, M. Corte-Real Santos, A. Leroux, L. Maino, F. Vercauteren and B. Wesolowski

May 14

What is an isogeny



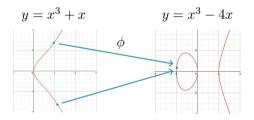
What is an isogeny

$$\phi: (x,y) \to \left(\frac{x^2+1}{x}, \frac{x^2-1}{x^2}y\right)$$

- map between elliptic curves
- respect group structure:

$$\phi(P+Q) = \phi(P) + \phi(Q)$$

 $\blacktriangleright \text{ kernel: } \{P \mid \phi(P) = 0\}$



Important properties

- ▶ an isogeny $\phi : E \to E$ is called *endomorphism*
- ▶ an example: [N](P) = P + ... + P
- ► can *add* endomorphisms: $(\phi + \psi)(P) = \phi(P) + \psi(P)$
- ► can *multiply* endomorphisms: $(\phi \cdot \psi)(P) = \phi(\psi(P))$
- endomorphisms form a ring $(End(E), +, \cdot)$

$$\blacktriangleright \ [1], [2], \ldots \in End(E) \quad \rightarrow \quad \mathbb{Z} \subset End(E)$$

Isogeny representations

Rational maps:

$$\phi: (x,y) \to \left(\frac{x^2+1}{x}, \frac{x^2-1}{x^2}y\right)$$

- derived explicitly
- easy to evaluate
- complexity polynomial in the degree

Interpolation data:

 $(\phi(P),\phi(Q))$

- requires evaluating the isogeny first
- more complex evaluation procedure
- independent of the degree

The isogeny world

Hard:

- compute End(E) for random E
- \blacktriangleright compute $\phi: E_0 \to E_1$

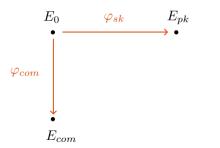
Easy:

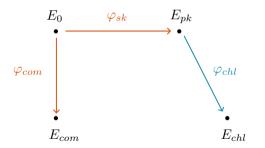
- compute End(E) for some special curves
- ▶ given $End(E_0)$ and $\phi: E_0 \to E_1$, compute $End(E_1)$
- ▶ given $End(E_0), End(E_1)$ compute $\phi: E_0 \to E_1$

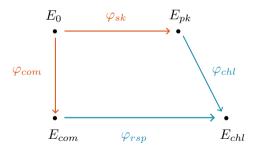
Secret key generation

- ▶ start from a *special curve* E_0 s.t. $End(E_0)$ is known
- \blacktriangleright compute a random isogeny φ_{sk} from E_0 to the public key E_{pk}
- with $End(E_0)$ and $\varphi_{sk}: E_0 \to E_{pk}$ compute $End(E_{pk})$ (secret key)
- done in most isogeny protocols

$$E_0 \xrightarrow{\varphi_{sk}} E_{pk}$$







Isogeny signatures

Pros:

very short signatures

Cons:

- complicated signing procedure
- not very fast

A new hard problem

Computing an isogeny of *large prime degree* from a random curve is hard.

- \blacktriangleright becomes easy if we know End(E)
- large and prime is needed
- **•** *small:* computing a 2-isogeny \rightarrow fast
- **smooth**: computing a 2^{256} -isogeny = 256 2-isogenies \rightarrow fast

A new hard problem

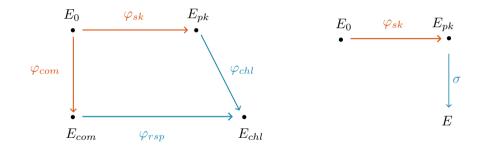
Computing an isogeny of *large prime degree* from a random curve is hard.

- well known problem in the math community
- best algorithms are exponential in the degree
- security proofs (e.g. SQISign) could become easier
- ▶ other schemes (e.g. PEGASIS) could become much faster

A simpler signature scheme

- \blacktriangleright given a message m
- ▶ hash m into a prime $q = H(m) > 2^a$
- ► a determines our *security* / *efficiency*
- using $End(E_{pk})$, compute an isogeny σ from E_{pk} of degree q
- the signature is an *interpolation* of σ : $(\sigma(P), \sigma(Q))$
- verification: check the validity of the representation

A simpler signature scheme



Concrete security

- ▶ key recovery: $O(p^{1/2}) \rightarrow p \approx 2\lambda$
- forgery: $O(q^2) \rightarrow a \approx \lambda/2$
- ▶ hash collisions: $O(q^{1/2}) \rightarrow a \approx 2\lambda$
- observing past signatures does not help:
 - can already compute high (smooth) degree isogenies from E_{pk}
 - being *prime degree* is most likely a disadvantage (SQISign oracles)

Signature Sizes

Protocol	This Work	SQIsign	SQIsign2D-East	SQIsign2D-West	SQIPrime
Sig. size (bits)	12λ	${\approx}11\lambda$	12λ	9λ	19λ

• signature size: 12λ bits (1 point + 1 x coordinate)

 \blacktriangleright can do 11λ bits but slower

Performance

	Key Gen	77.4
SQIsign2D-West	Sign	285.7
	Verify	11.9
	Key Gen	78.2
This work	Sign	157.6
	Verify	16.9

implemented on the SQISign2D-West codebase

> signing $1.8 \times$ faster, verification $1.4 \times$ slower

Computing an isogeny of *large prime degree* from a random curve is hard.

- simple isogeny-based signatures
- performance / size on par with SQIsign, but more flexible
- advanced protocols based on PRISM

Thank you for your attention.