

PRISM: PRime degree ISogeny Mechanism

Isogeny Club #5.5

Riccardo Invernizzi

COSIC - KU Leuven December 3rd

Outline

1. Main Idea

- 2. How to Do It
- 3. Security and attacks
- 4. Other isogeny based signatures
- 5. Implementation and Performance

Credits

- Andrea Basso
- Giacomo Borin
- Wouter Castryck
- Maria Corte-Real Santos
- Riccardo Invernizzi (Me)
- Luciano Maino
- Antonin Leroux
- Frederik Vercauteren
- Benjamin Wesolowski

High degree isogenies

Main idea: computing high (prime) degree isogenies is

hard without knowledge of the endomorphism ring

KU LEU

- best way: work rationally
- exponential in the smallest factor

easy with it

look at the corresponding ideals

This is exactly what we want in crypto.

Identification Protocol

- Verification key: random curve E_{vk}
- ▶ secret key: I_{sk} , $End(E_{vk})$
- query: a big prime number q
- ▶ response: a degree $q(2^a q)$ isogeny starting from E_{vk}
- verification: evaluate the isogeny and check the degree

Signature Scheme

- Public key: random curve E_{vk}
- ▶ secret key: I_{sk} , End (E_{vk})
- query: hash the message m into a prime number q
- ▶ signature: a degree $q(2^a q)$ isogeny starting from E_{vk}
- verification: evaluate the isogeny and check the degree

Outline

1. Main Idea

- 2. How to Do It
- 3. Security and attacks
- 4. Other isogeny based signatures
- 5. Implementation and Performance

Secret Key

▶ Start from *E*₀

- heuristic key-generation (QFESTA)
 - endomorphism of degree $n(2^a n)$
 - isogeny factorization
- rigorous key-generation (SQISign2D-West)
 - uniformly random ideal
 - IdealToIsogeny
- any other idea to obtain a known EndRing curve without consuming 2-torsion.

Response

• Generate an \mathcal{O}_0 -ideal I_{chall} of norm $q(2^a - q)$

RandomFixedNormIdeal

• compute
$$I_{\sigma} = [I_{sk}]_*I_{chall}$$

- translate $I_{\sigma}I_{sk}$ into the corresp. isogeny
 - IdealToIsogeny
- \blacktriangleright recover σ
- given $\langle P_{vk}, Q_{vk} \rangle = E_{vk}[2^a]$ compute $\sigma(P_{vk}), \sigma(Q_{vk})$

► send
$$P_{sig} = [q^{-1}]\sigma(P_{vk}), Q_{sig} = [q^{-1}]\sigma(Q_{vk})$$

Ideal to Isogeny

Main idea:

• given an ideal I find ideals I_1, I_2 and integers u, v s.t.

 $d_1u + d_2v = 2^a$

• use I_1, I_2 to build a Kani square and recover I.

We can use it as a black box. But:

• we need $p = f2^e - 1$ with f small cofactor

- we can reuse SQISign2D-West parameters
- better keep things odd

Hash to Prime

- ▶ Take any cryptographic hash function $H_a: \{0,1\}^* \rightarrow (2^{a-1},2^a)$
- compute $H_a(E_{vk}||msg||counter)$
- increment counter until a prime is found

Remarks:

- expected hits: 1/a
- each hash computation requires a primality testing $(O(a^2))$
- counter can be attached to the signature

Verification

- Recover q from the message (and counter)
- compute the isogeny with kernel

$$\langle (P_{vk}, P_{sig}), (Q_{vk}, Q_{sig}) \rangle$$

- \blacktriangleright obtain an isogeny Φ that embeds (factors of) σ
- ▶ compute $(P', -) = \Phi((P_{vk}, 0))$ and $(Q', -) = \Phi((Q_{vk}, 0))$

verify that

$$e_{2^{a}}(P',Q') = e_{2^{a}}(P_{vk},Q_{vk})^{n}$$

with $n \in \{q, 2^a - q\}$

Outline

1. Main Idea

2. How to Do It

3. Security and attacks

4. Other isogeny based signatures

5. Implementation and Performance

High degree isogeny oracles

- Many schemes (SQISign-HD...) rely on isogeny oracles
- hard to argue security without
- there is no known way to compute them
- claimed to leak no information
 - smooth isogenies cover the isogeny graph
 - for every given rough isogeny, there is an equivalent smooth one
- security by common belief

- ▶ Recovering the secret key means computing $End(E_{vk})$
- \triangleright E_{vk} is a random curve
- best known algorithms: Delfs-Galbraith & friends, $\widetilde{O}(p^{1/2})$
- \blacktriangleright requires $p \approx 2\lambda$

Forgery and impersonation

► Main problem: given a prime q compute a degree q(2^a - q) isogeny from a given curve E_{vk}

best way: Velu-sqrt

- computes the isogeny in $O(q^{1/2})$
- but: requires available q-torsion in O(q)
- total complexity $O(q^{3/2})$

other ways (kernel polynomial, ...) are even slower

• implies $q > 2^{2\lambda/3}$ so $a > 2\lambda/3$ (already ok)

• means $a \approx 90$ bits for Level 1

Reusing a signature

- Can always reuse part of a signature (e.g. factors of $2^a q$)
 - chosing $q > 2^{a-1}$ prime prevents it
- does looking at signatures help? Hopefully not
 - can already compute high degree isogenies from Evk
 - being *prime degree* is most likely a disadvantage

Hashing

- Another attack: hash collisions
- we hash into primes but the hash is repeated
 - the image space for the hash is only $2^{\lambda}/\lambda$
 - each message needs λ hash (+ primality tests)
- ► $a \approx 2\lambda$ is enough
- can do slightly better (e.g. a = 219 for $\lambda = 128$)
- by far the biggest constraint on a

Outline

1. Main Idea

- 2. How to Do It
- 3. Security and attacks
- 4. Other isogeny based signatures

5. Implementation and Performance

The SQIsign Family

A different paradigm form the SQIsign family

no Fiat-Shamir

- ▶ hash & sign
- more flexible (Erebor and Durian...)
- comparable size and speed

Other prime-degree isogeny signatures

Not really the first prime-degree isogeny based signature

DeuringVRF

DeuringVRF idea

- Pick d prime
- ▶ P,Q basis of E[d]
- ▶ $\iota \in End(E)$ s.t. $\iota(P) = Q$
- I_P the ideal corresponding to $\langle P \rangle$
- ideal of $\langle P + kQ \rangle$ is easy to compute
- evaluate with the IdealToIsogeny machinery

DeuringVRF-based protocols

Then in practice

- \blacktriangleright in DeuringVRF, k is the input
 - the random output is the codomain of the isogeny
- \blacktriangleright in SQIPrime, k is the challenge
 - evaluation by completing the diagram
 - verifier cannot compute the challenge

Comparison

- setting: fixed prime (VRF) vs. different primes (PRISM)
- consequence: d|(p+1) with d big prime
- bigger cofactor on p impacts IdealToIsogeny
- hash & sign and verification are similar
- overall PRISM is faster than VRF in all steps
- SQIPrime: VRF setting but different protocol

Outline

1. Main Idea

- 2. How to Do It
- 3. Security and attacks
- 4. Other isogeny based signatures
- 5. Implementation and Performance

Public key size

- \blacktriangleright E_{vk} : 4 λ bits
- Deterministic basis of $E_{vk}[2^a]$
 - included (fast) or computed (compact)
 - tradeoff: hints (SQISign2D-West)

Signature Sizes

Standard method:

- \blacktriangleright codomain E_{sig} : 4λ bits
- kernel (P_{sig}, Q_{sig}) : 16 λ bits (8 λ per point)
- deterministic basis: 2 coefficients per point
- $a \approx 2\lambda$, so 2λ bits per coefficient
- \blacktriangleright 12 λ bits in total
- det. basis + point compression: 11λ bits in total

Signature Sizes

Instead:

- ▶ send P_{sig} : 8λ bits
- recover E_{sig} (one field inversion)
- ▶ send $x(Q_{sig})$ (4 λ bits) + one bit (and one square root)
- no det. basis or pairings
- ▶ 12λ bits but much faster

Signature Sizes - Comparison

Protocol	This Work	$\operatorname{SQIsign}$	SQIsign 2D-East	SQIsign 2D-West	SQIPrime
Sig. size (bits)	12λ	${\approx}11\lambda$	12λ	9λ	19λ

- ▶ SQISign2D-East: can go to 10λ at the cost of more 2D steps
- SQISign2D-West: can go to 8λ at the cost of pairings
- SQIPrime: can go to 12λ using 4D isogenies

Communication cost

- Only require $a \approx \lambda + \log \lambda$
- \blacktriangleright curve: 4λ bits
- ▶ points: $4a \approx 4\lambda + 4 \log \lambda$ (+ det. basis)
- compressed points: $3a \approx 3\lambda + 3\log \lambda$ (+ pairings)
- ► total: $8\lambda + 4 \log \lambda / 7\lambda + 3 \log \lambda$

Performance

		Type of isogeny				
Protocol		2	3	5	(2, 2)	(2, 2, 2, 2)
	KeyGen	-	-	-	496	-
This Work	Sign	-	-	-	496	-
	Verify	-	-	-	219	-
	KeyGen	378	234	-	-	-
SQIsignHD	Sign	252	312	-	-	-
	Verify	-	78	-	-	142
	KeyGen	-	-	-	496	-
SQIsign2D-West	Sign	(248)	-	-	992	-
	Verify	(248)	-	-	(126)	-
	KeyGen	-	-	-	496	-
SQIsign2D-West (Heuristic)	Sign	(122)	-	-	624	-
	Verify	(122)	-	-	(126)	-
	KeyGen	-	-	-	253	-
SQIsign2D-East	Sign	127	(2)	(1)	641	-
	Verify	127	(2)	(1)	129	-

Performance - Comparison

- Key generation is the same
- no commitment / challenge isogenies
- hash to prime (signing) but no det. basis (verification)
- PRISM-id verification twice as fast:
 - only need a 2D isogenies
 - a = 135 for NIST Level 1

Performance - Comparison

	KeyGen	77.4
SQIsign 2D-West	Sign	285.7
	Verify	11.9
	KeyGen	78.2
This work	Sign	157.6
	Verify	16.9

- Implemented on the SQISign2D-West codebase
- **•** signing $1.8 \times$ faster, verification $1.4 \times$ slower
- currently: unoptimized LLL takes 40% of the time
- other schemes: not implemented but we can estimate

Conclusions

- Totally different idea from traditional schemes
- Competitive performance / size
- More flexible

Thank you for your attention.