
Leveled Isogeny Problems with Hints

Subham Das1 , Riccardo Invernizzi2 , Péter Kutas3,4 , and Jonas Meers5

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
subham.das@cispa.de

2 COSIC, KU Leuven, Belgium
riccardo.invernizzi@esat.kuleuven.be

3 Eötvös Loránd University, Hungary
kutasp@gmail.com

4 University of Birmingham, United Kingdom
5 Ruhr University Bochum, Germany

research@meers.org

Abstract. We define and analyze the Leveled Isogeny Problem with
Hints (LIPH), which is a generalization of the Isogeny Problem with
Level Structure first introduced by De Feo, Fuoutsa and Panny at EU-
ROCRYPT’24. In a LIPH instance we are tasked to recover a secret
isogeny φ given masked torsion point images Γ · (φ(P), φ(Q))⊤ for some
(P,Q) of order N and unknown Γ ∈ GL2(N). Additionally, we are pro-
vided a hint on Γ , revealing some bits of its entries. Instances of LIPH
occur naturally in the case of modern isogeny-based key exchanges that
use masked torsion points as part of their public key, when additionally
some parts of the masking matrix Γ are revealed due to, for instance, a
side-channel attack.
We provide efficient algorithms that solve various instances of LIPH,
leading to efficient partial key recovery attacks in practice. More specif-
ically, we present Coppersmith-type attacks that are able to recover an
M-SIDH/POKÉ secret key given 50% (resp. 86%) of the most-significant
bits of an entry of Γ , and a FESTA secret key given the 67% of the most-
significant bits of Γ . In the case of FESTA we also present a tailored
combinatorial attack running in subexponential time O(2

√
n) when 50%

of the bits of Γ leak at random.

1 Introduction

Introduced in 2011 by De Feo and Jao, the Supersingular Isogeny Diffie-Hellman
(SIDH) [18] was one of the most compact post-quantum key exchanges and the
flagship of isogeny-based cryptography at the time. On a high level, in SIDH
two parties Alice and Bob choose independently a secret isogeny φA : E0 → EA

and φB : E0 → EB between supersingular elliptic curves and the codomains are
subsequently exchanged. By applying their secret isogeny on the curve of the
respective other party, the goal is to compute a shared curve EAB only known to
Alice and Bob. However, due to the non-commutative nature of isogenies, SIDH
requires to publish additional torsion point information. Concretely, besides the

https://orcid.org/0009-0002-4659-4070
https://orcid.org/0000-0002-2271-6822
https://orcid.org/0000-0002-2043-9542
https://orcid.org/0000-0002-1755-8153

curve EA Alice needs to publish the image points (φA(P), φA(Q)) for some basis
(P,Q) ∈ E0[N] of large order N (and similarly for Bob).

Although it was theorized for a long time that these additional torsion points
might enable attacks on SIDH, the protocol withstood (almost) all cryptanalytic
efforts for over a decade. Finally, in 2022 Castryck and Decru [6] were able to
exploit the provided torsion point information in a devastating attack, which
was subsequently improved by Maino, Martindale, Panny, Pope, Wesolowski [20]
and Robert [29]. The attack builds upon higher-dimensional isogenies between
Abelian varieties and requires the knowledge of the degree degφA as well as
torsion point images (φA(P), φA(Q)) of order at least N ≥

√
degφA. All these

quantities are readily available in SIDH as either system parameters or in form
of the public key.

Following the attacks and the emergence of constructive use-cases of the
HD-technique, many variants of isogeny-based key exchanges were developed
that resist the SIDH attacks [14,25,4,3]. They all make use of the fact that
the commutativity of SIDH does not require the exact torsion point images
(φA(P), φA(Q)). Instead, publishing the torsion point images up to subgroup is
sufficient. For instance, the M-SIDH protocol [14] uses public keys of the form

(EA, [α]φA(P), [α]φA(Q)), α ∈ Z×
N

where the scalar α is commonly referred to as masking scalar. As mentioned
before, such a scalar does not influence the correctness of the key exchange as
⟨P + Q⟩ = ⟨[α]P + [α]Q⟩ for any two points (P,Q) ∈ E[N], which is the only
property required for an SIDH-style key exchange. However, the SIDH attack
is not applicable anymore as the secret isogeny now effectively has much larger
degree α2 degφA, violating the condition N ≥

√
α2 degφA since α ∈ Z×

N .

A slightly different idea comes from the FESTA [4] family (QFESTA [25]
and POKÉ [3]). Instead of building a Diffie-Hellman-like key exchange one can
use the SIDH attacks in a trapdoor setting as prioneered in the now broken
scheme Séta [11]. Here the underlying problem is differen from M-SIDH as the
isogeny images are masked by two different scalars α and β. Furthermore, in the
case of POKÉ, the degree degφA additionally remains hidden. The security of
these protocols thus relies on the assumption that it is hard to recover the secret
isogeny φA given (some variant of) masked torsion point information.

To assess the hardness of these types of assumptions, De Feo, Fouotsa and
Panny [12] analyzed isogeny problems with level structure – a notion first intro-
duced by Arpin [1]. Here, a level structure of level N is defined as a basis E[N]
up to transformation by some subgroup of GL2(N). The corresponding isogeny
problem is then essentially the task of recovering a secret isogeny φ : E → E′

given the tuple

(E,E′, P,Q, P ′, Q′), (P ′, Q′) = Γ · (φ(P), φ(Q))⊤

for some basis (P,Q) ∈ E[N] and unknown Γ ∈ GL2(N). Evidently, the isogeny
problem with level structure exactly models the task of recovering the secret

2

isogeny from an M-SIDH or (Q)FESTA public key, whereas in the case of POKÉ
an additional hardness arises since the degree of the isogeny is unknown.

Although easy instances of the isogeny problem with level structure exist,
the authors in [12] conclude that instances arising from public keys of masked
SIDH variants remain cryptographically hard to solve.

1.1 Our Contributions

In this paper, we study a variant of the isogeny problem with level structure
where we are given an additional hint on the matrix Γ . This models the situation
where part of the secret key leaks during key generation due to, for instance,
bad randomness or side-channel attacks. Our work thus broadly falls into the
category of partial key exposure attacks, which have been conducted on other
post-quantum protocols before [13,32,19].

To this end, we define the so-called Leveled Isogeny Problem with Hints
(LIPH), which can informally be defined as follows:

Given (E,E′, P,Q, P ′, Q′) with (P ′, Q′) = Γ · (φ(P), φ(Q))⊤ as well as
some bits of Γ , recover the secret isogeny φ.

Depending on the size and type of the hint, we are able to efficiently solve LIPH,
leading to efficient attacks in practice. In particular, our attacks do not require
a hint on φ. The attacks all have in common that a LIPH instance gives rise to
a pairing equation of the form

degφ · detΓ − r ≡ 0 mod N

for some known r ∈ ZN . We then incorporate the hint on Γ to efficiently solve
the pairing equation. Concretely, our attacks can be summarized as follows:

– In the case of M-SIDH, we can efficiently solve the arising LIPH instance if
50% of the most-significant bits of an entry in Γ leak. Note that M-SIDH
uses Γ =

(
α

α

)
, hence a hint on a single scalar yields a hint on all scalars in

Γ . The attack is based on the automated variant of the famous Coppersmith
method [9] introduced in [23] and recovers the secret isogeny within at most
a couple of hours, depending on the security level.

– In the case of (a compressed, four-dimensional variant of) POKÉ we require
knowledge of roughly 86% of the most-significant bits of an entry in Γ . Here
the matrix is again Γ =

(
α

α

)
, however the attack is made more difficult by

the fact that the degree of the isogeny φ is secret. Fortunately, in the four-
dimensional variant degφ is small compared to the order of the provided
(masked) torsion points, hence still allowing for an efficient attack. The at-
tack is again based on the automated variant of Coppersmith’s method,
running in a few hours at most.

– In the case of FESTA, a first attack based on the automated Coppersmith
method requireds knowledge of the 67% most-significant bits of Γ . Here
Γ =

(α
β

)
is a diagonal matrix with two distinct entries satisfying αβ ≡

1 mod N . The attack again requires at most a couple of hours to fully recover
the secret isogeny.

3

– A second attack, again in the FESTA setting, requires 50% of randomly
distributed bits of α and β. This attack is purely combinatorial, leverages
only the fact that αβ = 1 mod N and runs in subexponential complexity

O(2
√
b) where b = log n. Similar techniques appeared for instance in [17,16]

in the context of RSA factoring, leading to a polynomial-time algorithm but
those attacks are not immediately applicable here. Furthermore, we provide a
detailed statistical analysis of the attack by providing interesting connections
to certain combinatorial sequences.
Due to the fact that this attack only uses a very specific structure of FESTA,
the techniques developed might provide applications outside of isogeny-based
cryptography as well.

Finally, we provide proof-of-concept implementations for all our attacks in Sage,
available at the link https://github.com/KULeuven-COSIC/liph.

1.2 Related Work

The literature on partial key exposure attacks on post-quantum secure proto-
cols is quite extensive: in [13] the authors conduct attacks on BIKE, Rainbow
an NTRU. Furthermore, in [32] similar attacks were developed for the UOV sig-
nature scheme. In [22] the authors solve the LWE problem with hints. Lastly,
[19] proposes a partial key exposure attack on McEliece.

Regarding isogeny-based schemes, the first leakage attack on SIDH was con-
ducted in [15]. In [23] this attack was extended to CSIDH [8]. However, in both
attacks the authors assume partial knowledge on the shared key instead of the
secret key.

Acknowledgments. The authors thank Wouter Castryck for suggesting a
closed form of Equation (6), and the organizers of the Leuven Isogeny Days where
this project was started. Jonas Meers was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2092 CASA – 390781972. Péter Kutas is partly supported by
EPSRC through grant number EP/V011324/1. Péter Kutas is supported by the
Hungarian Ministry of Innovation and Technology NRDI Office within the frame-
work of the Quantum Information National Laboratory Program. Kutas is also
supported by the grant “EXCELLENCE-151343”. Subham Das was supported
by the Government of Hungary through the Stipendium Hungaricum scholar-
ship 2024/25. Riccardo Invernizzi is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement ISOCRYPT – No. 101020788), by the Research
Council KU Leuven grant C14/24/099, by CyberSecurity Research Flanders with
reference number VOEWICS02, and by Research Foundation - Flanders (FWO)
under a PhD Fellowship fundamental research (project number 1138925N). To-
gether with Kutas, they are also supported by the CELSA alliance through the
MaCro project.

4

https://github.com/KULeuven-COSIC/liph

2 Preliminaries

2.1 Elliptic Curves, Pairings and Isogenies

Let q be a prime power and E be an elliptic curve defined over Fq. We denote the
point at infinity with ∞E . For an extension field K ⊇ Fq we denote the set of K-
rational points by E(K). For an integer n we denote the multiplication-by-n map
by [n]. Its kernel is the n-torsion subgroup E[n] = {P ∈ E : [n]P = ∞E} and we
call an elliptic curve supersingular if E[p] = {∞E}. The set of all supersingular
elliptic curves is denoted by Eℓℓ(Fq).

An isogeny is a morphism φ : E → E′ between elliptic curves E,E′ such
that φ(∞E) = ∞E′ . The degree of φ is its degree as a morphism and we call
φ separable if gcd(p,degφ) = 1. In this work, we will only consider separable
isogenies. We call two elliptic curves isogenous if there exists an isogeny between
them. An isogeny is an isomorphism of elliptic curves if it has an inverse (which
may be defined over the algebraic closure of Fq). In that case, the inverse is
again an isogeny. Isomorphic curves have the same j-invariant, which is a simple
algebraic expression in the coefficients of the curve equation. Thus, one can check
whether two elliptic curves are isomorphic by comparing their j-invariant.

An isogeny from E to itself is called endomorphism. The set End(E) of en-
domorphisms of E (defined over the algebraic closure of the base field) forms
a ring under addition and composition and it is thus called the endomorphism
ring. The multiplication-by-n map [n] is always an endomorphism of E, hence
Z always embeds in End(E). Any isogeny φ : E → E′ is also a group homo-
morphism from E to E′ with finite kernel. In the case where φ is separable we
have degφ = | kerφ|. Conversely, any finite subgroup G ⊂ E corresponds to a
separable isogeny φ : E → E′ with kernel kerφ = G, where φ and E′ are unique
up to post-composition with an isomorphism. Since E′ is essentially uniquely
determined by kerφ, we will write E′ = E/G. One can compute φ and E/G via
Vélu’s formula [33], which can be evaluated in polynomial time in the size of the
kernel.

For an elliptic curve E defined over a field K, the Weil pairing is a map
en : E[n]×E[n] → µn that takes pairs of n-torsion points to n-th roots of unity
[34]. It can be efficiently computed via the Miller function [24] and satisfies the
following properties:

– Bilinearity : en(P +Q,R) = en(P,R)en(Q,R) and similarly en(P,Q+R) =
en(P,Q)en(P,R)

– Alternating : en(P, P) = 1 and en(P,Q) = en(Q,P)−1

– Non-degeneracy : If P ̸= ∞ then en(P,Q) ̸= 1 for some Q ∈ E[n]
– Compatibility : emn(P,Q) = en([m]P,Q) for all P ∈ E[mn] and Q ∈ E[n]
– Galois-equivariant : en(P

σ, Qσ) = en(P,Q)σ for all σ ∈ Gal(K/K)
– Isogenies: en(φ(P), φ(Q)) = en(P,Q)degφ for all φ ∈ Hom(E,E′)
– Surjectivity : for each P ∈ E[n] we have {en(P,Q) : Q ∈ E[n]} = µr, where

r := ord(P)

Recently many different ways of representing an isogeny have emerged, lead-
ing to the following unified definition.

5

Definition 2.1 (Efficient Isogeny Representation [31]). Let V, E be two
algorithms. Furthermore, let φ : E → E′ be an isogeny of degree d defined over
Fq. An efficient representation of φ (with respect to V and E) is a bit string
Dφ ∈ {0, 1}∗ of length O(poly log(dq)) such that:

– V(E,E′, d,Dφ) returns in time O(poly log(dq)) whether Dφ is a valid en-
coding of a d-isogeny between E and E′, and

– E(E,E′, d,Dφ, P) returns in time O(poly(k log(dq))) the image φ(P) of a
point P ∈ E(Fqk).

2.2 Polynomials

Let x1, . . . , xk be symbolic variables. A monomial is a product xi1
1 ·. . .·xik

k , where

i1, . . . , ik ∈ N. In particular, a product of the form c · xi1
1 · . . . · xik

k , where c ̸= 1,

is not a monomial. Let f(x1, . . . , xk) =
∑

i1,...,ik∈N αi1,...,ik · xi1
1 · . . . · xik

k be a

polynomial with coefficients αi1,...,ik ∈ Z. We say that xi1
1 · . . . ·xik

k is a monomial
of f , if αi1,...,ik ̸= 0. If all monomials of f are elements of some set M, then we
say that f is defined over M. We denote by deg(f) the total degree of f , i.e.,

deg(f) := max
αi1,...,ik

̸=0
(i1 + . . .+ ik).

The degree of some finite set of polynomials F ⊆ Z[x1, . . . , xk] is defined as

deg(F) := max
f∈F

deg(f).

Definition 2.2. For a set of polynomials F ⊂ Z[x1, . . . , xk], we define the set
of its integer roots as

ZZ(F) :=
{
r = (r1, . . . , rk) ∈ Zk | ∀f ∈ F : f(r) = 0

}
.

Similarly, for parameters N,X1, . . . , Xk ∈ N, we define the corresponding set of
its small modular roots as

ZN,X1,...,Xk
(F) :=

{
r = (r1, . . . , rk) ∈ Zk

∣∣∣∣∀f ∈ F : f(r) ≡ 0 mod N,
∀j : |rj | ≤ Xj

}
.

For a finite set F = {f1, . . . , fn}, we may abuse notation and write

ZZ(f1, . . . , fn) := ZZ(F),

ZN,X1,...,Xk
(f1, . . . , fn) := ZN,X1,...,Xk

(F).

Definition 2.3. Let M be a set of monomials. A monomial order (on M) is a
total order ≺ on M, that satisfies the following two properties:

1. For every λ ∈ M, it holds that 1 ≺ λ.
2. If λ1 ≺ λ2, then λ · λ1 ≺ λ · λ2 for every monomial λ ∈ M.

We only use the lexicographic monomial order ≺lex . The leading monomial of
a polynomial f (with respect to some monomial order ≺) is the unique monomial
λ of f , which satisfies λ′ ≺ λ for every monomial λ′ of f . The coefficient of the
leading monomial is called leading coefficient. If the monomial order is clear
from the context, we denote by LM(f) and LC(f) the leading monomial and the
leading coefficient of f , respectively. If LC(f) = 1, then we say that f is monic.

6

2.3 (Automated) Coppersmith’s Method

Coppersmith’s method is a lattice-based algorithm to find small roots of a system
of polynomial equations [9], where the polynomials can either be defined over the
integers or a finite ring ZN . While Coppersmith’s method was only able to handle
uni- and bivariate polynomials at first, it can be extended to the multivariate
case as well [5,10]. In this paper, we only consider the modular, multivariate
variant where the polynomial system is given by f1, . . . , fn ∈ ZN [x1, . . . , xk].

On a high level, Coppersmith’s method transforms the polynomial system
defined over ZN [x1, . . . , xk] into a polynomial system defined over Z[x1, . . . , xk].
To this end, Coppersmith’s method uses lattice techniques to construct a set of
polynomials h1, . . . , hk ∈ Z[x1, . . . , xk] such that all small modular roots of the
fi are integer roots of the hi. The integer roots of the hi can then be recovered
from the Gröbner-basis of the ideal a = (h1, . . . , hk) ⊆ Q[x1, . . . , xk]. Unfortu-
nately, this step only works when the ideal is zero-dimensional. Therefore, the
multivariate variants of Coppersmith’s method rely on the following heuristic.

Heuristic 2.4 (Coppersmith Heuristic). The polynomials obtained from Cop-
persmith’s method generate an ideal of a zero-dimensional variety.

To facilitate the process of using and optimizing Coppersmith’s method, the
authors of [23] propose an automated variant that replaces the lattice theory
with combinatorial constraints. Contrary to previous works, the authors do not
use an ad-hoc approach to construct the polynomials h1, . . . , hk. Instead, their
approach relies on choosing a set M of monomials from which the hi are derived.

Definition 2.5. Let M be a finite set of monomials, and let ≺ be a monomial
order on M. A set of polynomials F is called (M,≺)-suitable, if:

1. Every f ∈ F is defined over M.
2. For every monomial λ ∈ M there is a unique polynomial f ∈ F with leading

monomial λ (with respect to ≺).

If F is (M,≺)-suitable and λ ∈ M, then we denote by F [λ] the unique polyno-
mial f ∈ F with leading monomial λ.

In their framework, Coppersmith’s method can now be reformulated as fol-
lows.

Theorem 2.6 (Coppersmith’s Method). Suppose we are given a modulus
N ∈ N, polynomials f1, . . . , fn ∈ ZN [x1, . . . , xk] and bounds 0 ≤ X1, . . . , Xk ≤
N , where k = O(1). Furthermore, suppose we are given an integer m ∈ N, a
set of monomials M, a monomial order ≺ on M, and an (M,≺)-suitable set of
polynomials F ⊆ ZNm [x1, . . . , xk] with

ZN,X1,...,Xk
(f1, . . . , fn) ⊆ ZNm,X1,...,Xk

(F). (1)

If the conditions ∏
λ∈M

|LC(F [λ])| ≤ N (mi−k)|M|∏
λ∈M λ(X1, . . . , Xk)

, (2)

7

Algorithm 1: Constructing an optimal set F .

Input: Set of monomials M, monomial order ≺ on M, monic polynomials
f1, . . . , fn, and integer m ∈ N.

Output: (M,≺)-suitable set F , satisfying Equation (1), and minimizing the
left hand side in Equation (2).

1 F := ∅
2 for λ ∈ M do
3 Enumerate all polynomials f[λ,i1,...,in] as in Equation (3) such that

LM(f)i1 · . . . · LM(f)in divides λ and f[λ,i1,...,in] is defined over M.
4 Among all such f[λ,i1,...,in] pick one that maximizes i1 + . . .+ in and

include it in F .
5 end
6 return F

log(N) ≥ |M| ≥ m and |M| ≥ k hold, then we can compute all

r ∈ ZN,X1,...,Xk
(f1, . . . , fn)

in time polynomial in deg(F) · log(N), under Heuristic 2.4 for k > 1.

Given a set of monomials M, constructing an optimal (M,≺)-suitable set
F satisfying all the conditions in Theorem 2.6 can be done automatically via
Algorithm 1 and so-called shift polynomials of the form

f[λ,i1,...,in] :=
λ · f i1

1 · . . . · f in
n ·Mm−(i1+...+in)

LM(f1)i1 · . . . · LM(fn)in
. (3)

Furthermore, for any set f1, . . . , fn of modular polynomial the authors in [23]
provide a natural choice for M, thus fully automating the entire process. Their
choice for M might however not always yield optimal results.

Lastly, for any set f1, . . . , fn of modular polynomials the framework of [23]
can be used to automatically derive asymptotic bounds X1, . . . , Xk for which
Coppersmith’s method is successful. To this end, the authors define a sequence
M1 ⊂ M2 ⊂ . . . of sets of monomials and compute the corresponding (optimal)
(Mi,≺)-suitable Fi. For each pair (Mi,Fi) they then evaluate Equation (2)
and use polynomial interpolation to derive asymptotic bounds on X1, . . . , Xk.
The derivation relies on the following heuristic, which seems to always hold in
practice.

Heuristic 2.7. Let f1, . . . , fn ∈ Z[x1, . . . , xk], let ≺ be a monomial order on
x1, . . . , xk, and define

Mi :=
{
λ | λ is a monomial of f j1

1 · . . . · f jn
n , 0 ≤ j1, . . . , jn ≤ i

}
mi := i · n,

for i ∈ N. Then there exists a polynomial p(m) of degree k+1, such that for any
set Fi, that is obtained from Algorithm 1 on input (Mi,≺, (f1, . . . , fn),mi), it

8

holds that ∏
λ∈Mi

|LC(Fi[λ])| = Np(mi).

3 The Leveled Isogeny Problem with Hints

Let φ : E → E′ be an isogeny of (potentially non-smooth) degree. Using higher-
dimensional isogeny techniques [31], it is possible to represent (and subsequently
evaluate) the isogeny φ via the tuple (P,Q, φ(P), φ(Q)) for some accessible basis
(P,Q) of E[N] with N ≥

√
deg(φ) smooth.

Since revealing such information (e.g. as part of a public key in a key ex-
change) proves to be fatal, protocols usually mask the torsion point information
by multiplying (φ(P), φ(Q)) with a secret matrix Γ . Notably, the shape of Γ
varies across schemes, and the security of each scheme crucially relies on the
secrecy of Γ .

In this work we analyze the situation in which partial information about Γ
is leaked, which we refer to as hints.

Definition 3.1 (Binary Hint). Let x ∈ N be an n-bit integer and x[i] its i-th
bit.6 A k-bit hint for x is a set HJ (x) := {x[j] : j ∈ J } where J ⊆ {1, . . . , n} is
an index set of cardinality k.

Definition 3.1 extends entry-wise to tuples and matrices. To simplify notation
we may drop the index J and simply write H(x). Furthermore, we define the
following explicit types of hints:

– Most Significant Bits: Mk(x) := H(x) with J = {1, . . . , k}.
– Least Significant Bits: Lk(x) := H(x) with J = {n− k + 1, . . . , n}.
– Random Bits: Rk(x) := H(x) with random J ⊆ {1, . . . , n} of size k.
– Continuous Block : Cs,k(x) := H(x) with J = {s+ i mod n : 0 ≤ i < k}.

We are now ready to state a generalization of the isogeny problem with level
structure [12, Definition 1].

Definition 3.2 (Leveled Isogeny Problem with Hints (LIPH)). Let φ :
E → E′ be an isogeny of (potentially unknown) degree between two supersingular
curves defined over Fp2 . Furthermore, let (P,Q) ∈ E[N] be accessible torsion
points and (P ′, Q′) = Γ · (φ(P), φ(Q))⊤ for some smooth N ∈ N and Γ ∈
GL(N, 2). Given (E,E′, P,Q, P ′, Q′) and a k-bit hint H(Γ), recover an efficient
representation of φ.

Remark 3.3. Instances of LIPH that appear in the literature are restricted to
matrices Γ that are either diagonal or circulant since it is usually required that
Γ commutes with another matrix.

6 We use big-endian notation, i.e. x[1] represents the MSB.

9

As mentioned earlier, by using the Weil pairing any instance of LIPH gives
rise to a modular equation of the form

deg(φ) · det(Γ)− r ≡ 0 mod N (4)

for some known r ∈ ZN and (potentially) unknown deg(φ) and Γ . This suggests
the following strategy to solve LIPH: use the hint H(Γ) to solve Equation (4),
recovering deg(φ) as well as the four entries of Γ . Once recovered, the LIPH
instance is effectively turned into an unmasked SIDH instance and the isogeny
φ can be recovered in polynomial time via the standard SIDH attack [7,21,30].
Note that, in the case where the LIPH instance arises from the public key of a
key exchange, there is enough available torsion for the SIDH attacks due to the
correctness of the key exchange.

The hardness of LIPH mainly depends on k, Γ and the type of H(Γ). Indeed,
if no hint is provided, LIPH reduces to the generic isogeny problem, which is
believed to be intractable unless we assume Γ to be of a specific shape (cf. [12,
Figure 1]). On the other hand, if Γ is for instance the identity matrix or H(Γ)
contains all the bits of Γ , then LIPH is already an unmasked SIDH problem.
Furthermore, using the meet-in-the-middle strategy of [31] some instances of
LIPH can also be solved efficiently for LSB hints L(Γ).

Proposition 3.4. Let N = 22k, let q < N be the (unknown) degree of the secret
isogeny φ and let Γ =

(
a1 a2
a3 a4

)
. There exist an efficient adversary against the

Leveled Isogeny Problem with Hints where L4k(Γ) = (Lk(a1), . . . ,Lk(a4)).

Proof. Upon receiving (E,E′, P,Q, P ′, Q′), the adversary computes the points
(R,S) = ([2k]P, [2k]Q) and (R′, S′) = ([2k]P ′, [2k]Q′). We then have

(R,S) = Γ ′ · (φ(R), φ(S))⊤, Γ ′ ≡ Γ mod 2k

for known Γ ′ since Lk(Γ) contains the lower half of every entry in Γ . Fur-
thermore, the adversary can recover q mod 2k via Equation (4), resulting in an
unmasked instance of the SIDH-problem. The latter can be solved via the meet-
in-the-middle strategy in [31, Appendix B], which requires torsion point images
of order only

√
q <

√
N = 2k to represent φ.

Proposition 3.4 shows that for modulus N a power of two, only the least-
significant bits of Γ are required to solve LIPH, irrespective of the shape of Γ
or the degree q (as long as it is sufficiently small). Therefore, any attempt at
solving LIPH in this scenario only needs to recover sufficiently many LSBs of
(the entries of) Γ without completely recovering every entry.

Unfortunately, this reasoning does not apply to an odd modulus as it is not
possible to infer Γ ′ from L(Γ) such that Γ ′ ≡ Γ mod N ′ for some divisor N ′ | N .
Indeed, from L4k(Γ) as defined above we can infer ai = a′i · 2k + x, but it is still
not possible to know a′i · 2k + x mod N ′ as the modular reduction depends on
a′i. Note that this dependence is absent if N is a power of two and N ′ ≤ 2k as
a′i · 2k ≡ 0 mod N ′. Therefore, an odd modulus N requires different techniques,
which is a theme that continues in the next sections.

10

4 The Case Γ =
(
α

α

)
(a.k.a. M-SIDH, POKÉ)

In this section we consider the case where both torsion points are scaled by the
same (unknown) scalar, which appears in the context of M-SIDH and (com-
pressed, 4-dimensional variants of) POKÉ. Notably, the two schemes differ by
the fact that in M-SIDH the degree q of the secret isogeny is known whereas in
POKÉ it remains secret. Thus, in the case of M-SIDH Equation (4) contains one
variable less.

4.1 Known Degree

To counteract the SIDH attacks, M-SIDH [14] tweaks the original SIDH key
exchange by introducing a single masking scalar for both torsion points. Con-
cretely, for a prime p = ABf − 1 with smooth coprime A,B ∈ N, an M-SIDH
public key is the tuple (E′, [α]φ(P), [α]φ(Q)) where φ : E0 → E′ is the secret
key isogeny of known degree, (P,Q) is a deterministic basis of E0[B] and α ∈ Z×

B

such that α2 ≡ 1 mod B. Hence, leakage on α together with the public key give
rise to a LIPH instance where Γ =

(
α

α

)
, which can be solved via the following,

well-known theorem.

Theorem 4.1 (Coppersmith [9]). Given a modulus N , a univariate monic
polynomial f(x) of constant degree δ and a bound X ∈ N. If

X < N1/δ

we can compute all r ∈ ZN,X(f) in time polynomial in logN and δ.

The next result immediately follows from Theorem 4.1.

Proposition 4.2. Let φ : E0 → E′ be an isogeny of known degree and α ∈ Z×
B

as described above. There exists an efficient adversary against LIPH where Γ =(
α

α

)
and Mk(Γ) = Mk(α) with k = ⌈(logB)/2⌉.

Proof. Combining the LIPH instance (E0, E
′, P,Q, [α]φ(P), [α]φ(Q)) with Equa-

tion (4) yields the modular relation

α2 − 1 ≡ 0 mod B,

where (P,Q) ∈ E0[B]. Using the MSB hint Mk(α) with k = (logB)/2 we can
express the scalar as α = α′ + x for some known α′ ≥

√
B and small unknown

x ∈ N, yielding the monic equation

(α′ + x)2 − 1 ≡ 0 mod B.

Since x <
√
B we can now recover the least-significant bits of α via Theorem 4.1,

resulting in an unmasked instance of the SIDH problem. The isogeny φ can then
be efficiently represented as explained in Section 3.

11

4.2 Unknown Degree

POKÉ [2] combines rational and two-dimensional isogenies to build an efficient
and compact key exchange. Here, two-dimensional isogenies are used to represent
the secret isogeny. More specifically, for a prime p = 2a3b5c−1 and secret isogeny
φ : E0 → E′ of unknown degree q(2a − q), the public key is the tuple

(E′, [α]φ(P), [β]φ(Q), [γ]φ(R), [γ]φ(S))

for deterministic bases (P,Q) of E0[2
a] and (R,S) of E0[3

b5c]. Although the
public key contains two potential LIPH instances with Γ =

(α
β

)
and Γ =(γ

γ

)
, unfortunately both moduli 2a (≈ 2λ) and 3b5c (≈ 27λ/3) are to small to

allow for an efficient solution of Equation (4), even for very large hints (here λ
refers to the security parameter of the scheme).

Instead, we will focus on an optimization technique proposed in [2, Section
4.4] where four-dimensional isogenies are used instead of the faster, but also less
flexible two-dimensional counterparts. Subsequently, the degree of φ now is an
unknown integer q ∈ Z2a and the public key is simply (E′, [α]φ(P), [α]φ(Q))
for some deterministic basis (P,Q) of E0[2

a3b5c] and α ∈ Z×
2a3b5c

. Furthermore,

2a = 2λ/2 is sufficient to represent the secret isogeny, leading to N = 217λ/6 and
an overall more compact scheme.

It is easy to see that, given a hint on α, the compressed public key gives rise
to an instance of LIPH with Γ =

(
α

α

)
and unknown degree q. Contrary to the

uncompressed variant, it turns out that such instances are efficiently solvable
when given a sufficiently large MSB hint.

Theorem 4.3. Let ν = logN and φ : E0 → E′ be an isogeny of unknown degree
q < N6/17. Under Heuristics 2.4 and 2.7 there exists an efficient adversary
against LIPH where Γ =

(
α

α

)
and Mk(Γ) = Mk(α) with k = ⌈29ν/34⌉.

The proof of Theorem 4.3 relies on the following lemma, which is proven first.

Lemma 4.4. Given a modulus N , a polynomial f(x, y) = (x2+f1x+f2) ·y+f3
for some constants fi ∈ N, bounds X,Y ∈ N and an arbitrarily small constant
ϵ > 0. If N is sufficiently large and

XY ≤ N1/2−ϵ,

then under Heuristics 2.4 and 2.7 we can compute all r ∈ ZN,X,Y (f) in time
polynomial in log(N).

Proof. We use the strategy outlined in Section 2.3. To this end, we define

Mi := {λ | λ is a monomial of f j , 0 ≤ j ≤ i}
mi := 2 · i

for i ∈ N, which satisfy the conditions Mi ≥ mi and Mi ≥ 2 from Theorem 2.6.
Furthermore, if N is sufficiently large then log(N) ≥ |Mi| is also satisfied.

12

We now have that

N (m−2)|Mi| = NpM(mi),
∏

λ∈Mi

λ(X,Y) = XpX(mi) · Y pY (mi)

for some polynomials pM, pX , pY due to the definition of Mi. Similarly, under
Heuristic 2.7 we have ∏

λ∈Mi

|LC(Fi[λ])| = NpF (mi)

for some polynomial pF , where Fi is the output of Algorithm 1 on input (Mi,≺lex

, f,mi). We ran Algorithm 1 for i = 1, . . . , 5, obtaining the following values:

mi pM(mi) pF (mi) pX(mi) pY (mi)

2 0 7 3 3

4 18 31 13 13

6 64 82 34 34

8 150 170 70 70

10 288 305 125 125

Polynomial interpolation yields

pM =
1

4
m3

i + o(m3
i), pF =

5

24
m3

i + o(m3
i), pX = pY =

1

12
m3

i + o(m3
i)

and thus Equation (2) simplifies to

X1/12Y 1/12 ≤ N1/4−5/24−ϵ = N1/24−ϵ

for some ϵ that vanishes when mi increases. The result follows by raising both
sides to the 12th power.

Proof of Theorem 4.3. From Equation (4) it follows that the LIPH instance de-
fines the equation

α2q − r ≡ 0 mod N

for some known constant r ∈ ZN . Using the provided hint Mk(α), an adversary
knows the k = 29ν/34 most-significant bits of α. Hence we may write α = α′+x
for some unknown x ≤ N5/34 and q = y for some unknown y ≤ N6/17, yielding
the equation

(α′ + x)2 · y − r ≡ 0 mod N

via substitution. Since x · y ≤ N5/34+6/17 ≤ N1/2, this modular equation can
be solved in polynomial time via Lemma 4.4. Once α and q are recovered, the
adversary easily obtains a representation for the secret isogeny φ as explained
in Section 3.

Theorem 4.3 connects back to POKÉ by observing that all required condi-
tions are satisfied by the parameters of the four-dimensional POKÉ variant. In
particular, q ≤ N6/17 due to the fact that q ≤ 2λ and the parameter choice
N = 217λ/6 made in [2, Section 4.4].

13

5 The Case Γ =
(
α

β

)
(a.k.a. FESTA)

We now turn to the case where both torsion points are scaled by different scalars
α, β, which appears in the FESTA trapdoor function [4]. In more detail, FESTA
uses a prime p = 2bf − 1, a secret isogeny φ : E0 → E′ of known degree and
public keys of the form (E′, [α]φ(P), [β]φ(Q)) where (P,Q) is a deterministic
basis of E0[2

b]. Additionally, it is required that αβ ≡ 1 mod 2b.
As before, a hint on Γ yields an instance of LIPH. Depending on the type

of hint, however, the instance can either be solved by a dedicated combinatorial
approach or generically by Coppersmith’s method.

5.1 Random Hints

In this section we will approach the solution to the equation αβ ≡ 1 mod 2b,
assuming random bit leaks on both α and β. By random bit leaks we mean that
each bit of α and β has the same probability q of being leaked to an attacker. This
concretely rules out corner cases such as knowing the half most (or least) signif-
icant bits, or in general the knowledge of big blocks of consecutive bits, making
Coppersmith-based approaches hard to adapt. Our attacks in this settings have

complexity O(2
√
b), which is subexponential and is asymptotically significantly

faster than the best known key recovery attacks which are exponential.
In general, we can formulate the problem as follows. Let

α =

b∑
i=0

αi2
i, β =

b∑
i=0

βi2
i

two numbers such that αβ ≡ 1 mod 2b. As a leakage information, we receive a
fixed portion of the coefficients αi, βi ∈ {0, 1}. Let assume that q = 1/2, so we
get half of the bits for both α and β.

A first naive approach is to try to substitute all possible combinations of 0
and 1 in all the unknown bits. Since we expect to still have b unknown bits (b/2
from α and b/2 from β), we will need to try 2b combinations. Moreover, this
method does not give us any insight on how many valid combinations we expect
to find at the end, information that may be relevant if the solutions need to be
checked afterwards.

A more structured approach consist in solving the equation mod 2k for in-
creasing values of k. Notice that αβ ≡ 1 mod 2b already implies α0 = β0 = 1, so
the pair (1, 1) will be the only valid solution for k = 1. For k = 2, we will need
to solve

(2α1 + 1)(2β1 + 1) ≡ 1 mod 22

which may have one or two possible solutions, depending on whether the value
of α1 and β1 is known or not. For each solution found, we can do the same
reasoning for k = 3, and all the way up to k = b. More precisely, let Qk be a
list of pairs (x, y) such that xy ≡ 1 mod 2k, and x and y match with the known

14

bits of α and β respectively up to 2k. For each such pair (x, y), we look at the
equation mod2k+1 where we obtain

(x+ αk2
k)(y + βk2

k)− 1 ≡ xy + 2k(αky + βkx)− 1 mod 2k+1.

But since (x, y) is a solution mod2k, the entire equation is divisible by 2k, and
we have to solve

xy − 1

2k
≡ (αk + βk) mod 2.

Here the left hand side is uniformly random on {0, 1}, and we are left with three
possibilities:

– αk, βk are unknown; for a fixed pair (x, y) at step k, we then have two possible
pairs at step k+1, given by the two pairs of αk and βk matching the required
value;

– one among αk, βk is known; the left hand side fixes the value of the other
coefficient, and from a solution we generate exactly a new one;

– both αk and βk are known; on average, half of the time the left hand side
will match the right hand side, and we keep our solution; the other half of
the times, the two sides will not match, and we will discard the solution.

In the first case, |Qk+1| = 2|Qk|, while in the second one |Qk+1| = |Qk|. In the
third case, we expect on average |Qk+1| = |Qk|/2. While this behavior is only
heuristic, especially for big size of Qk it will be quite accurate. However we are
always sure of the existence of at least one solution; so if |Qk| = 1, and we are
in the third case, we will still have |Qk+1| = 1. We can hence make the following
heuristic assumption.

Heuristic 5.1. The known bits αk of α and βk of β are distributed uniformly
at random, i.e. the three cases described above occur with the same probability.
Moreover, if at a step k both αk and βk are known, the number of solutions is
cut in half unless it is already one, i.e. |Qk| = max{|Qk−1|/2, 1}.

Statistical analysis Let Sk = E[|Qk|] be the expected size of the list of solu-
tions after k steps. Then the average case complexity of our algorithm is bounded
by O(bSb), Sb being the number of queries we have to process at the last step.

We define the family of random variables {Jk}k by J0 = 1 and

P(Jk = l|Jk−1 = m) =


1/2 if m = l

1/4 if m = l + 1

1/4 if m = l − 1 ∨ 0.

for k ≥ 1.

Lemma 5.2. For every k it holds Sk = 2E[Jk].

Proof. The statement is trivial for k = 0. At every step, Jk increases or decreases
by one with the same probability of Qk doubling or halving its size (subject to
Heuristic 5.1). The two distributions are hence the same.

15

We now want to estimate the expected value E(Jk). The most simple way
to do it is to see Jk as the result of the following coin game: we start the game
with 1 coin, and at each turn we throw a dice with 4 sides, a, b, c and d. Then

– if the outcome is a or b, we keep our coins unchanged
– if the outcome is c, we gain one coin
– if the outcome is d, we lose one coin unless we only have one coin; if we have

one coin on d, nothing happens.

Let Gk be the set of all possible outcomes (i.e. the number of coins we have)
after k steps. We have

G0 = {1}
G1 = {1, 1, 1, 2}

G2 = {1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3}

and so on.

Lemma 5.3. Let
∑

Gk be the sum of all elements in Gk. Then
∑

Gk = 4kE[Jk].

Proof. By frequentist approach, we can define E[Jk] as the sum of all possible
outcomes for Jk, multiplied by their respective probabilities. If we see the event
Jk+1 = Jk as two events, each one with probability 1/4, then the possible out-
comes for Jk are exactly the possible outcome of the coin game, i.e. the elements
of Gk. The total number of outcomes (or equivalently, the number of elements
of Gk) is 4

k. Hence E[Jk] =
∑

Gk/4
k.

Theorem 5.4. Let Gk,n = #{copies of n ∈ Gk}. Then

Gk,n =

(
2k + 1

k + n

)
. (5)

Proof. We prove the statement by induction. The cases k = 0, 1 can be proven
directly by looking at the sets above and computing

G0,1 =

(
1

1

)
= 1, G1,1 =

(
3

2

)
= 2,

(
3

3

)
= 1.

Notice that by definition of the problem it always holds 1 ≤ n ≤ k + 1. We can
now assume that Equation (5) holds for k− 1, and prove it for k. First we prove
the statement for n = 1 and then for n > 1. For n = 1, one has that

Gk,1 = 3 ·Gk−1,1 +Gk−1,2.

By the induction hypotheses we have that

Gk,1 = 3

(
2k − 1

k

)
+

(
2k − 1

k + 1

)
=

(2k − 1)!(3 · (k + 1) + (k − 1))

(k + 1)!(k − 1)!
=

=
(2k − 1)!(4k + 2)

(k + 1)!(k − 1)!
=

(2k − 1)!(4k + 2)

(k + 1)!(k − 1)!
=

4k + 2

k + 1

(
2k − 1

k − 1

)
=

(
2k + 1

k + 1

)
.

16

For n > 1 instead one has that

Gk,n = 2 ·Gk−1,n +Gk−1,n−1 +Gk−1,n+1.

Again using the induction hypothesis we get

Gk,n = 2

(
2k − 1

k + n− 1

)
+

(
2k − 1

k + n− 2

)
+

(
2k − 1

k + n

)
=

(2k − 1)!(2(k + n)(k − n+ 1) + (k + n− 1)(k + n) + (k − n)(k − n+ 1))

(k + n)!(k − n+ 1)!
=

(2k − 1)! · 2k · (2k + 1)

(k + n)!(k − n+ 1)!
=

(
2k + 1

k + n

)

We are now ready to compute
∑

Gk.

Theorem 5.5. It holds∑
Gk =

1

2

(
4k +

(2k + 1)!

k!2

)
. (6)

Proof. For k = 0,
∑

Gk = 1 and Equation (6) can be tested directly. We then
proceed by induction. By looking at the coin game from before, we see that each
value n ̸= 1 in Gk produces the set {n−1, n, n, n+1} in Gk+1 for a total sum of
4n. On the other hand, for each n = 1 in Gk we have the set {1, 1, 1, 2} in Gk+1

with a sum of 5. We thus have the recurrence relation∑
Gk+1 = 4

∑
Gk +Gk,1

where we recall that Gk,1 is the amount of 1s in Gk. By using the induction
hypothesis on

∑
Gk and Equation (5) for Gk,1 we have

∑
Gk+1 = 4

∑
Gk +Gk,1 =

4

2

(
4k +

(2k + 1)!

k!2

)
+

(
2k + 1

k + 1

)
=

=
1

2

(
4k+1 + 4

(2k + 1)!

k!2
+ 2

(2k + 1)!

(k + 1)!k!

)
=

=
1

2

(
4k+1 +

(2k + 1)!(4(k + 1)2 + 2(k + 1))

(k + 1)!2

)
=

=
1

2

(
4k+1 +

(2k + 3)!

(k + 1)!2

)
where in the last step we used that (2k + 2)(2k + 3) = 4(k + 1)2 + 2(k + 1).

17

Remark 5.6. As a byproduct of Theorem 5.5 we obtain the identity

k+1∑
n=1

n

(
2k + 1

k + n

)
=
∑

Gk =
1

2

(
4k +

(2k + 1)!

k!2

)
.

Theorem 5.7. Under Heuristic 5.1, Sk = 2O(
√
k).

Proof. By Lemma 5.2 and Lemma 5.3, it follows Sk = 2
∑

Gk/4
k

. Applying the
Stirling approximation formula [28] to Equation (6) we get∑

Gk

4k
=

1

2 · 4k

(
4k +

(2k + 1)!

(k!)2

)
≈

1

2
+

1

2 · 4k

(√
2π(2k + 1)

(
2k+1

e

)2k+1

2πk
(
k
e

)2k
)

≈

1

2
+

2
√
πk(2k)2k+1e2k

4k+1π(ek)2k+1
=

1

2
+

1

e
√
π

√
k = O(

√
k).

(7)

Theorem 5.7 in particular implies the following:

Proposition 5.8. Let φ : E0 → E′ be an isogeny of known degree and α, β ∈
Z2b with αβ ≡ 1 mod 2b. There exists an adversary against LIPH with Γ =(α

β

)
, R2k(Γ) = (Rk(α),Rk(β)) and k = ⌈b/2⌉ that has time complexity O(2

√
b).

In Figure 1 we can see the average size of Qk after a 100 runs, for different
values of k. Each dot correspond to a run, and the red line indicates the expected
distribution of Sk.

Remark 5.9. This algorithm is completely parallelizable. At any step we can
take Qk and simply split it in the number of cores available.

A concrete example: practical key recovery on FESTA The subexpo-
nential complexity of this attack makes it very practical for a range of sizes that
are very common in isogeny based cryptography. In particular, we can recover
the secret key of a NIST Level 1 FESTA instance in a matter of seconds in
sage, when given leakage of half of the bits of α, β. In this section we follow the
notation from [4].

The secret key is an isogeny φA of degree A = dA,1dA2 , where

dA,1 = (59 · 6299 · 6719 · 9181)2

and
dA2

= (3023 · 3359 · 4409 · 5039 · 19531 · 22679 · 41161)2

18

Fig. 1. Average size of Qk for growing k

for a total of 274 bits. Let (Pb, Qb) a basis of E0[2
b] with b = 632. We are

also given RA = αφA(Pb) and SA = βφB(Qb). The first observation is that it
is enough to recover α, β mod 2c for any c such that 22c > 4dA. This is true
because from RA we can recover

2b−cRA = 2b−cαφ(Pb) = (α mod 2c)φ(2b−cPb)

and the same for SA. Then the image of the 2c torsion uniquely characterize φA,
which can be recovered in polynomial time using higher dimensional isogenies.
This would allow values of c of roughly 140 bits, for which the attack described
in the previous section definitely applies. However, the need (in general) of 4 or
8 dimensional isogenies maks this approach not fully practical.

What we can do instead is to try to solve the equation

un1 + vn2 = 2t, (8)

where n1n2 = dA. As shown in, [27], if we can do that and we have access to
a u-isogeny on E0 and a v-isogeny on EA (the public curve) we can actually
recover φA given its interpolation data on the 2t torsion. In this case, E0 is the
curve y2 = x3 + 6x2 + x, of which we know the endomorphism ring (since it
is 2-isogenous to the curve with j = 1728). This means that, using the method

19

from [26], we can compute isogenies of any degree u from E0. We can hence focus
on solving Equation (8) for v smooth, in order to compute a v-isogeny from EA.
A possible solution is given by

n1 = 3481

n2 = 0x160f1fdedc055ce30ae140a0eb15f28

192c31edede111b28fae7c2343612ef3aa9

u = 0x8073145bb9bd729fa94bd34f9f6e

555ce7f2306415af1707e0dcd964923898b0d

v = 4675

t = 273

where we also exploit the fact that we see the 4675 = 52 · 11 · 17 torsion on
EA. This implies that we need to recover α and β mod 2273, which is again well
within the reach of the method described in the previous section.

Notice that in general the solution returned from the combinatorial attack
will not be unique. However, only for the correct values of α, β the points βRA

and αSA will interpolate the isogeny φA. In all other cases the corresponding
isogeny chain will not land on a product of elliptic curves, giving us a distin-
guisher. With this method we can recover the secret φA. We do not recover
the exact values of α, β directly (we only get them mod2273) but they can be
obtained by evaluating φA on Pb, Qb.

We implemented the full attack in sage, showing that it can effectively recover
a good portion of keys in 3 to 4 seconds on a laptop. For comparison, key
generation takes 4 seconds on the same laptop. If the list of possible solutions to
the equation αβ = 1 mod 2273 grows, also the time taken to check all possible
solutions grows. However, this step can be fully parallelized, and when run on
20 cores usually takes at most 5 minutes.

Polynomial time variants If we fix the maximum allowed size of Q, the
algorithm described above runs in polynomial time in b. Fixing the maximal size
of Q means discarding at each step all exceeding solutions. This implies that the
correct solution has a certain probability of being discarded at every step. If the
solutions are discarded at random, the probability that the correct solution is
discarded grows sub-exponentially with n. Another way to interpret this is that
while this combinatorial attack generates a subexponential number of possible
paths, we can chose to follow only polynomially many of them.

The situation changes if we have a criterion to choose which solutions to
discard. This is the case if the final solution has some easy to check property,
e.g. if one among α and β is chosen to have small Hamming weight. In this case,
we can compute the probability that at a certain step k there are more than
S solution with a smaller Hamming weight that the correct one, assuming that
bits of a random solution are uniformly 0 or 1 and bits of the correct one are
0 with the probability determined by the target Hamming weight. Notice that

20

for higher k it becomes easier to distinguish the correct solution. If we target
a fixed success probability p, it is enough to fix S such that the probability of
discarding the correct solution over the course of the algorithm stays below p to
obtain a polynomial time algorithm.

Circulant matrices The FESTA trapdoor can be instantiated also using cir-
culant matrices instead of diagonal ones (see [4, Sec. 3]). In that setting, what
we obtain instead are two coefficients a, b such that a2 + b2 = 1 (or a2 − b2 = 1)
modulo 2k. Our combinatorial attack extends almost directly to this setting: we
can write a =

∑
xi2

i and b =
∑

yi2
i and try to solve the equation symbolically

modulo 2i for increasing values of i. A small issue is that we are no longer able
to recover all bits of a and b directly from that approach. For instance, the term
xk−1 will only appear in the double product 2x0(2

k−1xk−1), thus we can never
see it modulo 2k. If the first few bits of a are zero we lose information about lower
coefficients xi as well. However, this situation is very unlikely, and can occur for
at most one of a and b, since one of the two must be odd. We implemented a
proof of concept of this approach as well, and the results in practice are similar
to the ones obtained for diagonal scaling. We leave a more detailed statistical
analysis of this case as future work.

5.2 Continuous Hints

We now turn to the case where large, continuous blocks of bits leak. This scenario
represents the worst case for the attack presented in the previous section as it
cannot perform early rejections, leading to impractical running times. Therefore,
we have to resort back to a more generic approach based on Coppersmith’s
method. Depending on the modulus N , our attack can either handle MSB hints
Mk or continuous hints Cs,k.

We first require the following lemma. Due to its similarities with Lemma 4.4
we do not provide a formal proof.

Lemma 5.10. Given a modulus N , a polynomial f(x, y) = (f1+x) ·(f2+y)+f3
for some constants fi ∈ N, bounds X,Y ∈ N and an arbitrarily small constant
ϵ > 0. If N is sufficiently large and

XY ≤ N2/3−ϵ,

then under Heuristics 2.4 and 2.7 we can compute all r ∈ ZN,X,Y (f) in time
polynomial in log(N).

We now get the following result, assuming MSB leakage and modulus a power
of two (as it is the case in FESTA).

Proposition 5.11. Let φ : E0 → E′ be an isogeny of known degree and α, β ∈
Z2b with αβ ≡ 1 mod 2b. There exists an efficient adversary against LIPH where
Γ =

(α
β

)
and M2k(Γ) = (Mk(α),Mk(β)) with k = ⌈2b/3⌉.

21

Proof. The proof relies on Lemma 5.10 and is conceptually identical to Theo-
rem 4.3.

We can improve Proposition 5.11 slightly in the case where the modulus 2b

is replaced by an odd modulus N . Indeed, in this case we can handle continuous
hints as well since 2e is invertible modulo N for any e ∈ N. Note that such
parameters were not officially proposed in [4].

Corollary 5.12. Let φ : E0 → E′ be an isogeny of known degree and α, β ∈ ZN

with αβ ≡ 1 mod N . There exists an efficient adversary against LIPH where
Γ =

(α
β

)
and Cs,2k(Γ) = (Cs,k(α),Cs,k(β)) with k = ⌈2 log(N)/3⌉ and 0 ≤

s < ⌈log(N)⌉.

Proof. The proof is almost identical to Theorem 4.3, except for the fact that we
express α and β as

α = α1 · 2e1 + x · 2e0 + α0

β = β1 · 2e1 + y · 2e0 + β0

with e1 = max{ν − s, ν − (s + k mod ν)}, e0 = min{ν − s, ν − (s + k mod ν)}
and ν = ⌈logN⌉. Equation (4) now yields

(α1 · 2e1 + x · 2e0 + α0) · (β1 · 2e1 + y · 2e0 + β0)− 1 ≡ 0 mod N

and since 2e0 is invertible modulo N , we can transform the above equation
into a polynomial of the form (f1 + x) · (f2 + y) + f3. The result follows from
Lemma 5.10.

6 Experimental Results

We implemented the Coppersmith-type attacks on POKÉ and FESTA from Sec-
tion 4 and Section 5.2 in Sage 10.5. We ran the attacks on a system with an Intel
i7-1165G7 processor with 8 logical cores and 32GB of memory. For the lattice
reduction we used flatter7, leading to a significant increase in performance.
Note that we do not provide performance results for the attack on M-SIDH as
it performs almost identical to the attack on FESTA.

The results in Figure 2 show that we can get close to the asymptotic bounds
stated in Lemmas 4.4 and 5.10. Furthermore, in every experiment Heuristic 2.7
was valid. Note that these runtimes only reflect the recovery of Γ and (poten-
tially) degφ.

Acknowledgments. The authors thank Wouter Castryck for suggesting a
closed form of Equation (6), and the organizers of the Leuven Isogeny Days where
this project was started. Jonas Meers was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence

7 https://github.com/keeganryan/flatter

22

https://github.com/keeganryan/flatter

Protocol logN k (known bits) m Lattice Dimension Runtime (seconds)

POKÉ 363 334 (92%) 10 36 2

POKÉ 363 327 (90%) 20 121 65

POKÉ 363 323 (89%) 30 256 720

POKÉ 726 668 (92%) 10 36 5

POKÉ 726 653 (90%) 20 121 145

POKÉ 726 646 (89%) 30 256 1830

POKÉ 1451 1335 (92%) 10 36 14

POKÉ 1451 1306 (90%) 20 121 400

POKÉ 1451 1276 (88%) 30 256 5331

FESTA 632 456 (72%) 10 36 3

FESTA 632 443 (70%) 20 121 78

FESTA 632 437 (69%) 30 256 1435

FESTA 992 715 (72%) 10 36 6

FESTA 992 695 (70%) 20 121 131

FESTA 992 685 (69%) 30 256 2480

FESTA 1472 1060 (72%) 10 36 12

FESTA 1472 1031 (70%) 20 121 236

FESTA 1472 1016 (69%) 30 256 4415

Fig. 2. Runtime for the Coppersmith-type attacks from Sections 4.2 and 5.2. Here N
refers to the modulus of the corresponding pairing equation, which is either of the form
N = 2a3b5c (POKE) or N = 2b (FESTA). The runtimes are averaged over 5 runs.

23

Strategy – EXC 2092 CASA – 390781972. Péter Kutas is partly supported by
EPSRC through grant number EP/V011324/1. Péter Kutas is supported by the
Hungarian Ministry of Innovation and Technology NRDI Office within the frame-
work of the Quantum Information National Laboratory Program. Kutas is also
supported by the grant “EXCELLENCE-151343”. Subham Das was supported
by the Government of Hungary through the Stipendium Hungaricum scholar-
ship 2024/25. Riccardo Invernizzi is supported by the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement ISOCRYPT – No. 101020788), by the Research
Council KU Leuven grant C14/24/099, by CyberSecurity Research Flanders with
reference number VOEWICS02, and by Research Foundation - Flanders (FWO)
under a PhD Fellowship fundamental research (project number 1138925N). To-
gether with Kutas, they are also supported by the CELSA alliance through the
MaCro project.

References

1. Arpin, S.: Adding level structure to supersingular elliptic curve isogeny graphs.
Journal de théorie des nombres de Bordeaux 36(2), 405–443 (Nov 2024).
https://doi.org/10.5802/jtnb.1283, http://dx.doi.org/10.5802/jtnb.1283

2. Basso, A., Maino, L.: POKÉ: A compact and efficient PKE from higher-
dimensional isogenies. Cryptology ePrint Archive, Paper 2024/624 (2024), https:
//eprint.iacr.org/2024/624

3. Basso, A., Maino, L.: Poké: A compact and efficient pke from higher-dimensional
isogenies. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 94–123. Springer (2025)

4. Basso, A., Maino, L., Pope, G.: FESTA: Fast encryption from supersingular torsion
attacks. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part VII. LNCS, vol.
14444, pp. 98–126. Springer, Singapore (Dec 2023). https://doi.org/10.1007/978-
981-99-8739-9 4

5. Bauer, A., Joux, A.: Toward a rigorous variation of Coppersmith’s algorithm on
three variables. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 361–
378. Springer, Berlin, Heidelberg (May 2007). https://doi.org/10.1007/978-3-540-
72540-4 21

6. Castryck, W., Decru, T.: An efficient key recovery attack on sidh. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 423–447. Springer (2023)

7. Castryck, W., Decru, T.: An efficient key recovery attack on SIDH. In: Hazay,
C., Stam, M. (eds.) EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 423–447.
Springer, Cham (Apr 2023). https://doi.org/10.1007/978-3-031-30589-4 15

8. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An effi-
cient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (Dec
2018). https://doi.org/10.1007/978-3-030-03332-3 15

9. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Mau-
rer, U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 155–165. Springer, Berlin,
Heidelberg (May 1996). https://doi.org/10.1007/3-540-68339-9 14

24

https://doi.org/10.5802/jtnb.1283
http://dx.doi.org/10.5802/jtnb.1283
https://eprint.iacr.org/2024/624
https://eprint.iacr.org/2024/624
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-981-99-8739-9_4
https://doi.org/10.1007/978-3-540-72540-4_21
https://doi.org/10.1007/978-3-540-72540-4_21
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/3-540-68339-9_14

10. Coron, J.S.: Finding small roots of bivariate integer polynomial equations revisited.
In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp.
492–505. Springer, Berlin, Heidelberg (May 2004). https://doi.org/10.1007/978-3-
540-24676-3 29

11. De Feo, L., Delpech de Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A.,
Petit, C., Silva, J., Wesolowski, B.: Séta: Supersingular encryption from torsion
attacks. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS,
vol. 13093, pp. 249–278. Springer, Cham (Dec 2021). https://doi.org/10.1007/978-
3-030-92068-5 9

12. De Feo, L., Fouotsa, T.B., Panny, L.: Isogeny problems with level structure. In:
Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part VII. LNCS, vol. 14657, pp.
181–204. Springer, Cham (May 2024). https://doi.org/10.1007/978-3-031-58754-
2 7

13. Esser, A., May, A., Verbel, J.A., Wen, W.: Partial key exposure attacks on
BIKE, rainbow and NTRU. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part III. LNCS, vol. 13509, pp. 346–375. Springer, Cham (Aug 2022).
https://doi.org/10.1007/978-3-031-15982-4 12

14. Fouotsa, T.B., Moriya, T., Petit, C.: M-SIDH and MD-SIDH: Countering
SIDH attacks by masking information. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part V. LNCS, vol. 14008, pp. 282–309. Springer, Cham (Apr 2023).
https://doi.org/10.1007/978-3-031-30589-4 10

15. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016,
Part I. LNCS, vol. 10031, pp. 63–91. Springer, Berlin, Heidelberg (Dec 2016).
https://doi.org/10.1007/978-3-662-53887-6 3

16. Henecka, W., May, A., Meurer, A.: Correcting errors in RSA private keys. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 351–369. Springer, Berlin,
Heidelberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7 19

17. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Berlin, Heidelberg (Aug 2009). https://doi.org/10.1007/978-3-642-03356-8 1

18. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Post-Quantum Cryptography: 4th International Work-
shop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. Proceed-
ings 4. pp. 19–34. Springer (2011)

19. Kirshanova, E., May, A.: Decoding McEliece with a hint - secret goppa key parts
reveal everything. In: Galdi, C., Jarecki, S. (eds.) SCN 22. LNCS, vol. 13409, pp.
3–20. Springer, Cham (Sep 2022). https://doi.org/10.1007/978-3-031-14791-3 1

20. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A direct key
recovery attack on sidh. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 448–471. Springer (2023)

21. Maino, L., Martindale, C., Panny, L., Pope, G., Wesolowski, B.: A di-
rect key recovery attack on SIDH. In: Hazay, C., Stam, M. (eds.) EURO-
CRYPT 2023, Part V. LNCS, vol. 14008, pp. 448–471. Springer, Cham (Apr 2023).
https://doi.org/10.1007/978-3-031-30589-4 16

22. May, A., Nowakowski, J.: Too many hints - when LLL breaks LWE. In: Guo, J.,
Steinfeld, R. (eds.) ASIACRYPT 2023, Part IV. LNCS, vol. 14441, pp. 106–137.
Springer, Singapore (Dec 2023). https://doi.org/10.1007/978-981-99-8730-6 4

23. Meers, J., Nowakowski, J.: Solving the hidden number problem for CSIDH
and CSURF via automated coppersmith. In: Guo, J., Steinfeld, R. (eds.) ASI-

25

https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-030-92068-5_9
https://doi.org/10.1007/978-3-031-58754-2_7
https://doi.org/10.1007/978-3-031-58754-2_7
https://doi.org/10.1007/978-3-031-15982-4_12
https://doi.org/10.1007/978-3-031-30589-4_10
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-642-14623-7_19
https://doi.org/10.1007/978-3-642-03356-8_1
https://doi.org/10.1007/978-3-031-14791-3_1
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-981-99-8730-6_4

ACRYPT 2023, Part IV. LNCS, vol. 14441, pp. 39–71. Springer, Singapore (Dec
2023). https://doi.org/10.1007/978-981-99-8730-6 2

24. Miller, V.S.: The Weil pairing, and its efficient calculation. Journal of Cryptology
17(4), 235–261 (Sep 2004). https://doi.org/10.1007/s00145-004-0315-8

25. Nakagawa, K., Onuki, H.: QFESTA: Efficient algorithms and parameters
for FESTA using quaternion algebras. In: Reyzin, L., Stebila, D. (eds.)
CRYPTO 2024, Part V. LNCS, vol. 14924, pp. 75–106. Springer, Cham (Aug
2024). https://doi.org/10.1007/978-3-031-68388-6 4

26. Nakagawa, K., Onuki, H.: Qfesta: Efficient algorithms and parameters for festa
using quaternion algebras. In: Annual International Cryptology Conference. pp.
75–106. Springer (2024)

27. Page, A., Robert, D.: Introducing clapoti (s): Evaluating the isogeny class group
action in polynomial time. Cryptology ePrint Archive (2023)

28. Robbins, H.: A remark on stirling’s formula. The American mathematical monthly
62(1), 26–29 (1955)

29. Robert, D.: Breaking sidh in polynomial time. In: Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 472–503.
Springer (2023)

30. Robert, D.: Breaking SIDH in polynomial time. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 472–503. Springer, Cham (Apr
2023). https://doi.org/10.1007/978-3-031-30589-4 17

31. Robert, D.: On the efficient representation of isogenies (a survey). Cryptology
ePrint Archive, Report 2024/1071 (2024), https://eprint.iacr.org/2024/1071

32. Seto, Y., Furue, H., Takayasu, A.: Partial key exposure attacks on UOV and its
variants. Cryptology ePrint Archive, Report 2025/595 (2025), https://eprint.
iacr.org/2025/595

33. Vélu, J.: Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des
Sciences 273, 238–241 (1971)

34. Weil, A.: Sur les fonctions algébriques à corps de constantes fini. Les Comptes
Rendus de l’Académie des Sciences (1940)

26

https://doi.org/10.1007/978-981-99-8730-6_2
https://doi.org/10.1007/s00145-004-0315-8
https://doi.org/10.1007/978-3-031-68388-6_4
https://doi.org/10.1007/978-3-031-30589-4_17
https://eprint.iacr.org/2024/1071
https://eprint.iacr.org/2025/595
https://eprint.iacr.org/2025/595

	Leveled Isogeny Problems with Hints

