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Abstract. The main building block in isogeny-based cryptography is an
algorithmic version of the Deuring correspondence, called IdealToIsogeny.
This algorithm takes as input left ideals of the endomorphism ring of a
supersingular elliptic curve and computes the associated isogeny. Build-
ing on ideas from QFESTA, the Clapoti framework by Page and Robert
reduces this problem to solving a certain norm equation. The current
state of the art is however unable to efficiently solve this equation, and
resorts to a relaxed version of it instead. This impacts not only the ef-
ficiency of the IdealToIsogeny procedure, but also its success probability.
The latter issue has to be mitigated with complex and memory-heavy
rerandomization procedures, but still leaves a gap between the secu-
rity analysis and the actual implementation of cryptographic schemes
employing IdealToIsogeny as a subroutine. For instance, in SQIsign the
failure probability is still 2−60 which is not cryptographically negligible.
The main contribution of this paper is a very simple and efficient algo-
rithm called Qlapoti which approaches the norm equation from Clapoti
directly, solving all the aforementioned problems at once. First, it makes
the IdealToIsogeny subroutine between 2.2 and 2.6 times faster. This sig-
nigicantly improves the speed of schemes using this subroutine, including
notably SQIsign and PRISM. On top of that, Qlapoti has a cryptograph-
ically negligible failure probability. This eliminates the need for reran-
domization, drastically reducing memory consumption, and allows for
cleaner security reductions.
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1 Introduction

Post-quantum cryptography aims to build cryptographic protocols that are se-
cure against both classical and quantum adversaries. The growing investment
in quantum computing has prompted NIST to seek replacements for classical
public key cryptosystems, resulting in the recent NIST standards: Kyber [37] for
key encapsulation and Dilithium [25], Falcon [34], and SPHINCS+ [20] as signa-
ture schemes. Despite this, NIST opened an alternate call for digital signatures
schemes [30], highlighting the need for further research. Indeed, we currently rely
mostly on lattice-based security assumptions, and the signature sizes are much
larger than the pre-quantum signatures that are currently used.

Isogeny-based digital signatures are promising candidates, since they are very
compact and are based on radically different hardness assumptions, providing
needed diversity. The two most prominent isogeny-based signatures schemes are
SQIsign [2] and PRISM [8], whose combined signature and public-key sizes are
between 7.7 and 37 times smaller8 than the already standardized protocols [33].
Due to these advantages, SQIsign has progressed to the second round in the call
for additional signatures. However, the signing algorithm is significantly slower,
and more complex compared to other schemes. Therefore, to make isogeny-based
signatures practical, it is crucial to find new techniques that simplify these al-
gorithms and improve their performance.

An essential part of many isogeny-based signature schemes is the Deuring
correspondence, which gives a bijection between quaternion ideals and isogenies.
After pioneering work by Kohel, Lauter, Petit, Tignol [23] introducing the KLPT
algorithm, this correspondence was made effective (also due to Galbraith, Petit,
Silva [19]), meaning that one could efficiently translate a quaternion ideal to its
corresponding isogeny. This was subsequently used to construct the first version
of SQIsign [16, 17]. However, its reliance on precisely the (generalized) KLPT
algorithm made the original signing procedure very slow and complex.

Inspired by the attacks on SIKE [11, 26, 35] (an earlier isogeny-based key-
encapsulation mechanism), isogeny-based cryptography has been revolutionized
by efficiently representing isogenies as components of higher-dimensional isoge-
nies. For instance, using 2-dimensional isogenies, QFESTA [28] showed how to
compute an isogeny of a given degree from a base curve E0 with known endomor-
phism ring. This technique was then used by Page and Robert in Clapoti [31],
who showed how to translate any (quadratic) ideal to its corresponding isogeny
efficiently.

The performance of SQIsign was also majorly improved by leveraging higher-
dimensional isogenies [9, 14, 29]. In particular, a technique based on Clapoti can
be applied to quaternion ideals as well [9, 29], which results in an algorithm to
efficiently translate ideals into the corresponding isogeny without reliance on the
KLPT algorithm, by embedding it in a 2-dimensional isogeny. From now on, we
refer to this algorithm as IdealToIsogeny as in [3, Alg. 3.13]. These same tools

8In more detail, for NIST Level I SQIsign is 7.7 times smaller than Falcon, 18 times
smaller than ML-DSA and 37 times smaller than SPHINCS+.
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were also used to create the signature scheme PRISM, a simple hash-and-sign
signature scheme with similar performance to SQIsign, but relying on a different
hardness assumption.

Despite the huge improvements of IdealToIsogeny over previous KLPT-based
algorithms, it is still the dominating cost in the key generation and signing
procedures of SQIsign and PRISM. In particular, IdealToIsogeny takes up about
90% of the time in key generation and 80% in signing for SQIsign, at all different
security levels.

Overview of state-of-the-art. We now give an overview of the main ideas
underlying the state-of-the-art in ideal-to-isogeny translation.

QFESTA: The current state-of-the-art builds on an insight due to QFESTA [28]:
given an endomorphism θ ∈ End(E0) of degree deg(θ) = d1·d2 with gcd(d1, d2) =
1, it is possible to efficiently split this endomorphism as long as d1 +d2 = 2e and
E0[2e] is defined over Fp2 , in particular 2e ≤ p + 1. Splitting an endomorphism
means to write it as a composition of two isogenies: θ = ϕ2 ◦ϕ1 = ψ1 ◦ψ2, where
deg(ϕ1) = deg(ψ1) = d1 and deg(ϕ2) = deg(ψ2) = d2. Note that indeed we get
two decompositions, depending on the order of the degrees d1 and d2. Kani [21,
§2] showed how such decomposition corresponds to the diagram:

E0 E1

E2 E0

ϕ1

ψ2 ϕ2

ψ1

and that these isogenies define a 2-dimensional isogeny Φ : E0 × E0 → E1 × E2

of degree d1 + d2 = 2e, whose kernel only depends on the action of θ on E0[2e].
Since θ is given, we can explicitly determine this kernel and efficiently compute
the codomain E1×E2 using a chain of (2, 2)-isogenies. Note that this is already
sufficient to generate an isogeny of a given degree u say, as long as we can find
an endomorphism θ of degree deg(θ) = u(2e − u). Finding such θ ∈ End(E0) is
efficient [28, §3.1] as long as u(2e − u) > p.

Clapoti: Although QFESTA gives a method to construct an isogeny of a certain
degree, it does not allow to control the codomain curves E1, E2. In their Clapoti
framework [31], Page and Robert showed how θ can be constructed, such that
splitting θ solves the ideal-to-isogeny translation problem. In particular, given
a left O0-ideal J , they show how to compute the corresponding isogeny ϕJ :
E0 → E1 by constructing an appropriate θ. Recall that an ideal I equivalent
to J results in the same (up to isomorphism) codomain curve E1, so if we take
two ideals I1 = Jβ1 and I2 = Jβ2 both equivalent to J , the ideal I2 · I1 =
β2JJβ1 is by construction principal, generated by an endomorphism θ of degree
nrd(I1)nrd(I2). Thus as long as we can find equivalent ideals I1 and I2 whose
norms satisfy

nrd(I1) + nrd(I2) = 2e < p , (1)
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we can apply the QFESTA splitting technique to θ to compute E1 (and also ϕJ).
Unfortunately, the current state-of-the-art is unable to solve the above equa-

tion for 2e < p directly. Instead, the current best approach is to generate random
equivalent ideals Ii of small norm and hope to find a solution to the more general
equation

u · nrd(I1) + v · nrd(I2) = 2e < p , (2)
for integers u, v. Since the smallest norm of an equivalent ideal is in general
around √p, and Equation (2) typically only has solutions when nrd(I1)nrd(I2) <
2e < p, the failure probability to find a solution to this equation is quite high,
e.g., 2−8 in the basic version of SQIsign.

At a high level, there are currently two known approaches to lower the failure
probability, as shown in PEGASIS [13]. The first is to take out the smooth-
normed parts of I1 and I2, to lower nrd(I1) and nrd(I2). However, it is still
unclear whether this approach can be applied to the quaternion setting, while
staying in dimension 2. The second approach is a rerandomization procedure.
Again, this becomes significantly more complex in the quaternion setting, and
requires precomputing a list of different starting curves and connecting isogenies.
This second approach is what is currently done in SQIsign, which lowers the
failure probability to ≈ 2−60 [3, Table 8], but results in an algorithm that is not
only significantly more complicated than the approach outlined above, but also
uses a large amount of memory during execution [3, Section 3.2.5].

This leads to further issues. First, the fact that the failure probability is not
negligible in the security parameter creates a bias in the distribution of signatures
and public keys of the schemes relying on IdealToIsogeny. This bias cannot be
ignored and is very hard to quantify for a rigorous security analysis, in particular
for SQIsign, as noted in [5, §7]. Second, the high memory cost makes the current
algorithms unsuitable for resource-constrained devices [1], despite the fact that
small key and signature sizes make these platforms particularly appealing for
deploying SQIsign and PRISM.

Finally, even when a solution I1, I2 is found, we still need to construct auxil-
iary isogenies of degrees u and v, e.g., using the QFESTA approach. This means
that, instead of a single chain of (2, 2)-isogenies, three such chains must now be
computed (with those corresponding to u and v being of half the length).

Our approach. The main problem with the current approach is that it gener-
ates the ideals I1 and I2 independently and of small norm. This makes it virtually
impossible to solve Equation (1) directly. Our approach constructs the ideals I1
and I2 simultaneously, of norm a bit smaller than p (in contrast with the √p of
current methods), but such that the sum of their norms satisfies Equation (1).

We start by replacing J with an equivalent ideal I of smallest norm nrd(I) =
n and write it as I = O0〈n, α〉 with α a random generator of somewhat small
norm. Since the ideals I1, I2 will also be equivalent to I, there exist βk ∈ I for
k = 1, 2 such that Ik = Iβk/n [16, Lemma 1]. The norm equation for the ideals
Ii can thus be replaced by a norm equation for the elements βi:

nrd(β1) + nrd(β2) = 2e · n . (3)
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Since βk ∈ I, we can write them in full generality as βk = γk ·n+γ′k ·α for some
γk, γ

′
k ∈ O0. Note that each γ has 4 unknown integral coefficients, so simply

substituting these expressions in Equation (3) would result in a quadratic form
in 16 unknowns. Since this is a bit too complex, we simplify things by setting
γ′k = 1. Using the expression nrd(x+ y) = nrd(x) + tr(xy) + nrd(y) and dividing
by n, we can rewrite the above equation as:

n(nrd(γ1) + nrd(γ2)) + tr((γ1 + γ2)α) = 2e − 2r , (4)

where r is the integer such that nrd(α) = n · r. Note that since α ∈ I, we indeed
have n | nrd(α). As the right-hand side is smaller than p, we need to force the
left-hand side also to be smaller than p. In particular, we should only consider
γk ∈ Z[i]. Indeed, we have that nrd(j) = nrd(k) = p, which would already make
γk too large. Restricting to γk = ak + bki, and defining α = aα+ bαi+ cαj+dαk,
we finally end up with the equation

n(a21 + b21 + a22 + b22) + 2aα(a1 + a2) + 2bα(b1 + b2) = 2e − 2r . (5)

To reduce the above equation to a standard sum-of-squares problem, we need to
get rid of the terms coming from the trace. The crucial insight is that this can
be accomplished by looking at the equation modulo n, finding a small solution
(s, t) to 2aαx + 2bαy = 2e − 2r mod n and then imposing the linear conditions
a1 + a2 = s and b1 + b2 = t. Since these terms by definition are now constant,
they can be moved to the right-hand side. By a final substitution of a2 = s− a1
and b2 = t − b1, dividing by n and multiplying by 2, we recover a standard
sum-of-squares problem

(2a1 − s)2 + (2b1 − t)2 = 2w/n− s2 − t2 , (6)

which can be solved using Cornacchia’s algorithm [12]. Back substitution then
gives βk and finally the ideals I1, I2.

Our contributions. The main contribution of this paper is the algorithm
sketched above, which we call Qlapoti. The efficient resolution of the norm equa-
tion Equation (1) immediately implies a much faster IdealToIsogeny since we
no longer require the auxiliary degree u and v isogenies, and therefore are left
with computing only a single chain of (2, 2)-isogenies. A second contribution is
the implementation of Qlapoti in SageMath and in C, which confirm a speed-up
over IdealToIsogeny of up to a factor of 2.6. We further integrated our Qlapoti
implementations into both SQIsign and PRISM, showing that we achieve signifi-
cant improvements in both cases. These improvements are not only restricted to
computational speed; apart from being faster, measurements show that running
SQIsign with Qlapoti requires between a factor of 11 and 34 times less memory,
compared to the NIST Round 2 submission [2]. Finally, our third contribution
is a detailed statistical analysis of Qlapoti, resulting in accurate failure probabil-
ities, under reasonable heuristics. For the three NIST levels, we achieve (heuris-
tic) failure probabilities of 2−197, 2−312, 2−438, which are negligible compared to
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the respective security levels. This also makes the security proof of SQIsign and
PRISM much cleaner since signature failures are no longer a problem.

The implementations can be found in our public repository:

https://github.com/KULeuven-COSIC/Qlapoti

2 Preliminaries

In this section we recall the effective Deuring correspondence, focusing on its
application to isogeny-based signature schemes, namely higher-dimensional vari-
ants of SQIsign [3, 9] and PRISM [7]. We assume the reader is familiar with the
literature on elliptic curves and their isogenies. We refer the reader to [15, 38]
for more information. Throughout the paper, p is a prime with p ≡ 3 (mod 4),
E0 is the (supersingular) elliptic curve y2 = x3 + x defined over Fp, and O0 is
the quaternion order isomorphic to End(E0) (See Example 1).

2.1 Quaternion algebras and Deuring correspondence

Let Bp,∞ be the unique (up to isomorphism) quaternion algebra over Q ramified
at p and∞. This means it is a division algebra defined by Q+Qi+Qj+Qk, where
i2 = −1, j2 = −p, k = ij = −ji. For a given element α = a+ bi+ cj+ dk ∈ Bp,∞
we define its conjugate α := a− bi− cj− dk and its reduced norm nrd(α) := αα.
A fractional ideal in Bp,∞ is a Z-submodule of rank 4. An order O is a fractional
ideal that is also a subring. An order is maximal if it is not properly contained
in any other order, and a maximal order O is special extremal if it contains a
suborder Z[ω] + Z[ω]j such that ω has smallest norm in O and Z[ω] ⊂ (Z[ω]j)⊥.
Let I be a fractional ideal in Bp,∞. We define the left order of I to be OL(I) :=
{α ∈ Bp,∞ | αI ⊂ I}. We can similarly define the right order OR(I) of a
fractional ideal I, and I is called a connecting ideal for OL(I) and OR(I). If I
is contained in its left order (or, equivalently, in its right order) then it is an
integral ideal, or just an ideal for short.

For a fractional ideal I, we denote its conjugate by I = {α | α ∈ I}. The
reduced norm of an ideal I, denoted by nrd(I), is defined as the gcd of the
reduced norms of the elements of I. For a maximal order O, any left O-ideal I
can be written as I = O〈α,nrd(I)〉 = Oα+Onrd(I) for some α ∈ I. Two ideals
I and J are equivalent if there exists β ∈ B×p,∞ such that I = Jβ. We denote
equivalence by I ∼ J . Also, by [16, Lemma 1], all the equivalent ideals I ∼ J
are of the form χJ(α) := Jᾱ/nrd(J) for some α ∈ J and α determines I up to
multiplication by an element of O×0 . The norm of I = χJ(α) = Jᾱ/nrd(J) is
nrd(I) = nrd(α)/nrd(J).

Since fractional ideals are also rank 4 Z-lattices, elements of small norm can
be efficiently found via classical lattice algorithms. In this way, we can define the
procedure SmallestEquivIdeal, that given as input an ideal of (large) norm J , finds
the smallest element α ∈ J and returns the ideal χJ(α). The following lemma
gives an upper bound for the norm of the smallest element in each equivalence

https://github.com/KULeuven-COSIC/Qlapoti
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class of ideals. This will prove useful when analysing the output size of our
algorithm.

Lemma 1 (Lemma 12 [14]). Let O be a maximal order and let J be a left
O-ideal. Then there exists α ∈ J such that nrd(α) ≤ 2

√
2p/π · nrd(J) and thus

nrd(χJ(α)) ≤ 2
√

2p/π.

Deuring [18] showed a categorical equivalence between maximal orders in Bp,∞
and supersingular elliptic curves defined over Fp2 . This equivalence is known as
the Deuring correspondence. Under this correspondence, to each maximal order
O of Bp,∞ we can associate a supersingular elliptic curve E over Fp2 , up to
Fp-isomorphism, such that End(E) ∼= O. An isogeny ϕ : E1 → E2 corresponds
to an ideal Iϕ, where OL(Iϕ) ∼= End(E1) and OR(Iϕ) ∼= End(E2). Moreover,
deg(ϕ) = nrd(Iϕ).

A more detailed discussion of quaternion algebras and the Deuring corre-
spondence can be found in [16, 39].

Example 1. Since p ≡ 3 mod 4, the elliptic curve E0 : y2 = x3 + x defined over
Fp2 is supersingular. We can define endomorphisms ι : (x, y) 7→ (−x,

√
−1y) and

π : (x, y) 7→ (xp, yp) of E0, where
√
−1 is a fixed square root of −1 in Fp2 . We

have the following isomorphism of rings:

O0 := Z
〈

1, i,
i + j

2
,

1 + k

2

〉
−→ End(E0),

a+ bi + cj + dk 7−→ a+ bι+ cπ + dιπ.

Notably, O0 is a special extremal order since it is maximal and it contains Z[i]+
Z[i]j.

2.2 Kani’s lemma

Kani’s lemma [21] gives a criterion to compute isogenies of dimension one using
isogenies of dimension two. It was at the heart of the SIDH attacks [11, 26,
35], but it quickly became an indispensable constructive tool for isogeny-based
protocols. Our formulation of Kani’s lemma follows [26].

Theorem 1 (Kani). Let d1, d2 and N be pairwise coprime integers such that
N = d1 + d2, and let E0, E1, E2, and E3 be elliptic curves connected by the
following commutative diagram of isogenies:

E0 E1

E2 E3

ϕ1

ψ2 ϕ2

ψ1
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such that deg(ϕ1) = deg(ψ1) = d1, deg(ϕ2) = deg(ψ2) = d2 and ϕ2◦ϕ1 = ψ1◦ψ2.
Then the map

Φ =

(
ϕ1 ϕ̂2

−ψ2 ψ̂1

)
: E0 × E3 → E1 × E2

is an isogeny of (principally polarized) abelian varieties with kernel

ker(Φ) = {([d1]P,ϕ2 ◦ ϕ1(P )) | P ∈ E0[N ]} ∼=
Z
NZ
× Z
NZ

.

Assuming that N is smooth and all N -torsion points are rational (in our case,
we have N = 2e), the isogeny Φ can be efficiently evaluated at any point on
E0 ×E3. Indeed, to evaluate the isogeny ϕ1 at any point P ∈ E0 we evaluate Φ
on (P,∞E3) and then project the result onto E1. In this way, the generators of
the kernel defining Φ encode an efficient two-dimensional representation of ϕ1,
as defined in [36].

2.3 Ideal to isogeny translation

A central task for isogeny-based schemes is the following: given a maximal order
O ⊂ Bp,∞ isomorphic to End(E) and a left O-ideal J , translate J to the isogeny
associated to it via the Deuring correspondence. For ease of presentation, we
limit this exposition to the case where the domain curve has j-invariant 1728;
see Example 1. This core problem is the main bottleneck in key generation and
signing procedure of the signature schemes SQIsign [3] and PRISM [7].

In [23], Kohel, Lauter, Petit and Tignol introduced the KLPT algorithm,
which solves a “constrained norm equation”. Namely, they develop an algorithm
to find an α ∈ J such that nrd(α) = nrd(J)2r, where r is a large positive
integer. The equivalent ideal χJ(α) then has norm 2r, and thus, using auxiliary
odd-degree isogenies, can be translated into a chain of 2-isogenies in polynomial
time [16, 17]. This algorithm is the core of the original SQIsign protocol [16].
However, in practice this translation strategy is inefficient due to the size of r
and the use of odd-degree isogenies.

We highlight the following two subroutines of the KLPT algorithm. The first
one will be needed in the algorithm introduced in Section 3, while the second
will only be used in references to earlier work:

– Cornacchia: given two integers d, n, outputs a solution (x, y) to x2 +dy2 = n,
when such a solution exists. Otherwise, it outputs ⊥. A necessary condition
for the existence of a solution is that −d is a quadratic residue modulo n.
The algorithm can be traced back to Cornacchia [12, 27] and pseudocode
can be found in the SQIsign specifications [3, Algorithm 3.11].

– RepresentInteger: given M ∈ N where M > p, outputs an element γ ∈ O0 of
normM , where O0 is the order defined in Example 1. It relies on Cornacchia’s
algorithm and can be generalized to all special extremal orders. The first
version of this algorithm was introduced at the same time as KLPT [23], and
a variant that works for generic orders was subsequently proposed in [17].
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Translations using higher dimensional isogenies. Page and Robert [31]
recently introduced Clapoti, a procedure that leverages higher dimensional iso-
genies and Kani’s lemma (see Theorem 1) to obtain a new algorithmic tool for
converting any ideal to the corresponding isogeny. While the Clapoti procedure
in [31] is originally designed for ideals of quadratic imaginary orders, its core
ideas can be adapted to efficiently translate (almost) any left O0-ideal, when
working over Fp2 with p = f2e+2 − 1, for some small odd f > 0. This is shown
in the IdealToIsogeny algorithm from SQIsign2D-West [9], which we summarise
in Algorithm 1.

Algorithm 1 IdealToIsogeny(J)

Input: Left O0-ideal J , a basis P0, Q0 ∈ E0[2
e]

Output: Isogeny ϕJ associated to J and its domain EJ .
1: Find I1, I2 ∼ J of coprime norms d1, d2 and u, v such that ud1 + vd2 = 2e, with
ud1 coprime to vd2. . see [9, Algorithm 2]

2: Get θ := ϕ̂I2 ◦ ϕI1 ; . Given by the principal ideal I = I2 · I1
3: Compute ϕu, ϕv of degrees u, v on E0[2

e];
4: Get Pu, Qu ← ϕu(P0), ϕu(Q0);
5: Set ϕ← ϕv ◦ θ ◦ ϕ̂u;
6: Set KP ← ([d1u]Pu, ϕ(Pu));
7: Set KQ ← ([d1u]Qu, ϕ(Qu));
8: Compute Φ : Eu × Ev → EJ × E′ of kernel 〈KP ,KQ〉; . using Theorem 1
9: Evaluate ϕI1 on E0[2

e] using Φ(Pu,∞Ev ) = ([u]ϕI1(P0), ∗) and Φ(Qu,∞Ev ) =
([u]ϕI1(Q0), ∗);

10: Using ϕI1 , evaluate ϕJ = [d−1
1 ]ϕI1 ◦ β1 on E0[2

e]; . using [9, Lemma 11]
11: return ϕJ , EJ ;

Eu E0 EJ

E0

E′ Ev

ϕ̂u

ϕ
ψv,2

ϕI1

θ
ϕ̂I2

ϕv

ψu,1

Fig. 1. Diagram from [9], the isogenies ψu,1 and ψv,2 are the isogenies given by the
relative pushforwards of the corresponding isogenies.

Step 1 consists of sampling elements β1 and β2 in J until the (reduced) norms
d1, d2 of I1 = χJ(β1), I2 = χJ(β2) satisfy the equation ud1 + vd2 = 2e for some
u, v > 0. Note that since I1, I2 are left O0-ideals equivalent to J , the composition
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ϕ̂I2 ◦ϕI1 is an endomorphism θ of E0, which can be computed from β2β1 via the
isomorphism in Example 1 (see Step 2).

For Step 3, different strategies can be used depending on u, v. In [9], u, v ≈ √p
and so ϕu and ϕv can be sampled and computed via a direct application of the
QFESTA algorithm [28]. This requires that the endormorphism ring of E0 is
isomorphic to a special extremal order. In some special cases – e.g., if u, v are
squares, sum of squares or smooth integers – we can sample ϕu and ϕv using
more efficient representations.

Step 8, inspired by [31], consists of embedding the isogenies ϕ1 ◦ ϕ̂u and
ϕ2 ◦ ϕ̂v, of degrees d1u and d2v respectively, into a (2e, 2e)-isogeny using Kani’s
lemma. Indeed, by applying Theorem 1, we obtain an efficient representation of
the isogeny ϕ1 ◦ ϕ̂u. By composing with ϕu, we can use this to evaluate points
for ϕI1 , and thus recover ϕJ by applying [9, Lemma 11] (see Step 10).

A more detailed description of each step of the algorithm can be found in [9,
§4.2] and [3].

Limitations. As Algorithm 1 is the main algorithmic building block used in
key generation and signing procedure in SQIsign, extensive analysis has been
performed to understand its failure probability [3, §9.3]. There are three possi-
ble reasons why Algorithm 1 may fail. Two of them are well understood: failures
in the computations of the higher-dimensional isogenies and failures in the sub-
routine RepresentInteger, which is necessary to compute the auxiliary isogenies
ϕu, ϕv in Step 3.

However, it is important to note that the failure probability of Step 1 is
not well understood [3, Section 9.3.2]. Let d1 = nrd(β1)/nrd(J) and d2 =
nrd(β2)/nrd(J). The main obstacle in finding suitable β1, β2 is that the existence
of u, v satisfying ud1+vd2 = 2e is only guaranteed when (d1−1)(d2−1) < 2e+1.
Unfortunately, this condition is rarely met in our setting, since d1, d2 ≈

√
p and

2e = (p − 1)/f . If this fails, the probability of finding a valid pair decreases
rapidly – approximately as 2e/(d1d2). For this reason, β1 and β2 have to be
selected among the shortest vectors of J , whose expected norms are approxi-
mately √p. However, for the lattices we consider we cannot expect the norms of
the shortest vectors to behave as random numbers – for instance, the first two
successive minima in O0 are always equal because i ∈ O0. As reported in [3,
Section 9.3.2], for NIST Level I, the failure probability measured from extensive
experiments is 2−8.2.

In [3, Section 3.2.3], a modified version of Algorithm 1, and in particular of
Step 1, is presented to partially overcome this limitation, trading efficiency for
a lower failure probability. The core idea is to provide additional randomness
to this step by considering other possible starting curves than E0 (precisely 6),
having special extremal orders as endomorphism rings. Then they consider short
elements not only in J , but also in the connecting ideals between the other orders
and OR(J). This, under another heuristic assumption regarding the distribution
of these ideals, gives an estimated failure probability below 2−60. However, this
not only slows down the algorithm, but also increases the memory requirements
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for the sieving procedure. Also, to avoid costly computations at runtime, these
curves and data associated to them need to be precomputed. The successive steps
of the function need to be adapted to handle the additional curves, increasing
the overall complexity of the algorithm. Furthermore, even if small, the failure
probability is non-negligible. This poses a significant limitation to the security
analysis of the (signature) schemes that rely on the IdealToIsogeny procedure,
since the failures introduce biases in the output distributions – a factor that is
difficult to account for in the security analysis. In the case of IdealToIsogeny,
this issue is even more problematic, as the failure probability itself is difficult
to estimate. Notably, for SQIsign, this problem has already been observed in the
literature [5, §7].

2.4 Isogeny-based signatures

We now detail the two main isogeny-based signature schemes impacted by the
results of this paper: SQIsign and PRISM. Though they follow two different frame-
works (namely, one uses the Fiat-Shamir paradigm, the other is a hash-and-sign
scheme), they both share the same underlying subroutines. In particular, they
both strongly rely on the IdealToIsogeny algorithm described in Section 2.3. For
the two schemes p = f2e+2−1 for some small odd f > 0 and e a positive integer.
The public key consists of a supersingular curve Evk, which can be represented
by its j-invariant (in 2 log(p) bits) and two torsion points Pvk, Qvk generating
Evk[2

e+2]. The latter can be deterministically generated, so the final size of the
public key is 2 log(p) bits. The secret key consists of a left O0-ideal Isk that is
converted to an isogeny φsk : E0 → Evk using the IdealToIsogeny algorithm. We
briefly detail here the signing procedures of the two schemes, focusing on the
role of ideal translations.

SQIsign. The SQIsign signature scheme is based on the following Σ-protocol9.

– Commitment: the prover samples a random left O0-ideal Icom and uses
IdealToIsogeny to compute the associated isogeny ψcom : E0 → Ecom. The
commitment Ecom is sent to the verifier.

– Challenge: the verifier samples a random power-of-2 degree isogeny φchall :
Evk → Echall and sends it to the prover.

– Response: the prover translates φchall to a leftOR(Isk)-ideal Ichall and uses it
to find the ideal J ′ associated to the isogeny φchall ◦φsk ◦ ψ̂com : Ecom → Echall.
Using Lemma 1, the prover finds an equivalent ideal Iresp of small norm.
Then, after factoring out the even-degree part, the prover computes the
isogeny σresp : Ecom → Echall. The prover sends an efficient representation of
the isogeny σresp to the verifier. To get an efficient representation that solely

9There exist several variants of the protocol, sharing the same intuitions; we present
the one introduced by Basso, Dartois, De Feo, Leroux, Maino, Pope, Robert, and
Wesolowski [9], which is also the one implemented in the submission to the NIST
standardization [3].
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relies on 2-dimensional isogenies, an additional auxiliary isogeny needs to be
provided. This isogeny is obtained by translating a uniformly sampled ideal
of suitable norm, again via the IdealToIsogeny algorithm.

– Verification: the verifier checks that σresp is a valid isogeny from Ecom to
Echall of the expected degree.

The SQIsign signature scheme is obtained by applying the Fiat-Shamir para-
digm to the previous Σ-protocol. Thus, every signature generation requires two
executions of the IdealToIsogeny algorithm.

A complete proof of security of SQIsign is given in a recent work by Aardal,
Basso, De Feo, Patranabis, and Wesolowski [4]. The protocol is sound given
the hardness of the One Endomorphism Ring Problem for the supersingular
elliptic curve Evk [32]. The honest-verifier zero-knowledge property is instead
more challenging to prove due to the potentially large degree of the response
isogeny σresp. The issue is that simulating valid transcripts requires computing
high-dimensional representations without knowing the secret key (i.e. the endo-
morphism ring of Ecom) – a task that is currently considered computationally
hard. The two possible workarounds to prove zero knowledge involve either ad
hoc oracles – as done, e.g., in [9] – or variants of the Endomorphism Ring Prob-
lem and Fiat-Shamir heuristic in which additional hints are provided [5].

There is however still a gap between the security analysis they provide and
the actual security of the SQIsign implementation, due to the non-negligible
failure probability of the IdealToIsogeny algorithm. As stated in [5], developing a
new IdealToIsogeny algorithm which has negligible failure probability closes this
gap [5, Section 7].

PRISM. The PRISM signature scheme [7] is an isogeny-based hash-and-sign
signature scheme that relies on the hardness of computing large-degree isogenies
originating from elliptic curves whose endomorphism ring is unknown. As in
SQIsign, PRISM uses higher-dimensional representations of isogenies both for
the generation and the verification of signatures. Let a > 0 be a fixed integer
smaller than e. Given an input message mes, the signing algorithm works as
follows:

1. The message mes is hashed to a prime q of exactly a bits.
2. A left OR(Isk)-ideal Iσ of norm q(2a − q) is sampled uniformly.
3. Using IdealToIsogeny, the isogeny associated to Iσ ·Isk is computed, and used

to extract the corresponding isogeny σ : Evk → Esig of degree q(2a − q).
4. An efficient representation of the isogeny σ is returned as a signature for

mes.

The verification algorithm consists of checking that the signature is a valid
isogeny of degree q(2a − q) from Evk. In [7, §4] the authors show that, in the
random oracle model (ROM), the unforgeability of the scheme reduces to the
hardness of the following:
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Problem 1. Given a random curve E, a set of N isogenies {φi : E → Ei}Ni=1

of degree qi(2a − qi) for qi uniformly random in the set of primes of a bits and
φi uniformly random among the isogenies of degree qi(2a − qi), and a prime q̄
of a bits not in {qi}Ni=1, give an efficient representation of an isogeny of degree
q̄(2a − q̄).

We note that this reduction implicitly assumes that the signatures are distributed
uniformly random among the isogenies of the same degree. However, in practice,
this is not the case, since the IdealToIsogeny algorithm (used once during signing)
creates a non-negligible bias in the distribution of the signatures, due to the
failure probability.

3 Qlapoti: the main algorithm

In this section, we describe Qlapoti in detail following the outline sketched in
the introduction. In particular, given as input a left O0-ideal J it computes two
equivalent ideals I1, I2 such that

nrd(I1) + nrd(I2) = 2e (7)

with 2e < p.
At the start of Qlapoti, we use the function SmallestEquivIdeal to replace J

by an equivalent ideal I of minimal norm n = nrd(I) which by Lemma 1 satisfies
n ≤ 2

√
2p/π and write I = O0〈n, α〉 with α a small random generator. Note that

α is far from unique; in fact, there are exponentially many (in log n) choices for
α that will work (see the analysis in Section 4), which allows us to randomize
the algorithm keeping the ideal I, and thus its norm n, fixed. Since n | nrd(α),
we define r to be an integer satisfying nrd(α) = n · r.

Since all ideals equivalent to I are of the form χI(β) = Iβ̄/nrd(I) with
β ∈ I [16], it is thus sufficient to find two elements β1, β2 ∈ I with

nrd(β1) + nrd(β2) = 2e · n . (8)

We can write βk for k = 1, 2 as βk = γk · n + γ′k · α for some γk, γ′k ∈ O0.
However, we will only consider βk for which γ′k = 1 and γk ∈ Z[i]. Although this
choice seems to considerably limit the degrees of freedom in finding good βk, it
drastically simplifies (8), without compromising our ability to solve it.

To solve (8) we write α = aα + bαi + cαj + dαk with aα, bα, cα, dα ∈ 1
2Z and

γk = ak + bki for k = 1, 2 with ak, bk ∈ Z. Note that both 2aα, 2bα ∈ Z and we
can assume these are reduced modulo n and thus smaller than n, since n ∈ I.
Then expanding (8) and dividing by n gives

n(a21 + b21 + a22 + b22) + 2aα(a1 + a2) + 2bα(b1 + b2) = 2e − 2r . (9)

Reducing the above equation mod n then gives

2aα(a1 + a2) + 2bα(b1 + b2) = 2e − 2r mod n . (10)
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If we assume that either gcd(2aα, n) = 1 or that gcd(2bα, n) = 1, the above
equation will have a solution (in fact it suffices that gcd(aα, bα, n) | 2e− 2r). By
relabeling if necessary, we assume that gcd(2aα, n) = 1. If we then also assume
that n - 2bα, the following lemma shows we expect to find at least a solution
(s, t) to the equation 2aαx+ 2bαy = 2e − 2r mod n whose 2-norm is in O(

√
n).

Lemma 2. Let a, b, c, n ∈ Z with gcd(a, n) = 1, n - b and n > 0, then over the
choices of such a, b, c ∈ Z/nZ, the expected 2-norm of the smallest solution (s, t)
to ax+ by = c mod n can be bounded by 1.3278 ·

√
n.

Proof. Since gcd(a, n) = 1, the integer solutions of the homogeneous equation
ax+by = 0 mod n form a rank-2 lattice Λ of volume n, which follows easily from
the basis vectors (−ba−1 mod n, 1) and (n, 0). Finding a small solution (s, t) to
the equation ax + by = c mod n is now equivalent to solving a CVP problem
for Λ with target vector (c′, 0) where c′ = a−1 · c mod n. Let B = {b1, b2} be
a shortest basis of Λ with lengths the successive minima λ1 and λ2. Then, an
approximate solution to CVP can be found by Babai’s rounding algorithm, i.e.
write (c′, 0) = αb1 + βb2 with α, β ∈ R, and round α and β to the nearest
integers. This solution satisfies

‖(c′, 0)− (bαeb1 + bβeb2)‖2 = ‖(α− bαe)b1 + (β − bβe)b2‖2 ≤
λ1 + λ2

2
.

To conclude, we use that the expected lengths of the successive minima of a
random 2-dimensional lattice of volume n can be estimated as λ1 ∼ 0.6826

√
n

and λ2 ∼ 1.97314
√
n as shown in [6, Thm13]. ut

The above lemma gives a rather crude upper bound on the expected length of
the shortest (s, t). In Section 4, we provide a more in-depth analysis using the
probability mass function of the random variable ε :=

√
s2 + t2/

√
n.

Once we have found a shortest solution (s, t), we impose the linear relations
a1+a2 = s and b1+b2 = t between the variables ak and bk. By doing so, we make
the sums constant, and the term 2aαs+2bαt can therefore be moved to the right
hand side of Equation (9). By construction of (s, t), w := 2e − 2r − 2aαs− 2bαt
is divisible by n and Equation (8) becomes a21 +a22 + b21 + b22 = w/n. Substituting
a2 = s− a1 and b2 = t− b1 gives 2a21− 2a1s+ s2 + 2b21− 2b1t+ t2 = w/n, which,
upon multiplication by 2, finally results in

(2a1 − s)2 + (2b1 − t)2 = 2w/n− s2 − t2 . (11)

If z := 2w/n − s2 − t2 > 0 and if z can be written as a sum of squares
z = z20 + z21 (in particular, all prime factors pi of z that are pi = 3 mod 4 should
occur with an even exponent), we can compute z0 and z1 using Cornacchia’s
algorithm [12]. Given z0 and z1, we then have to solve for the integers a1, b1 such
that 2a1 − s = z0 and 2b1 − t = z1, which is only possible when z0 = s mod 2
and z1 = t mod 2. Note that it is possible to verify whether such solutions exist
before we call Cornacchia, by looking at Equation (11) modulo 4 and conclude
that:
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– If z = 0 mod 4, then s = t = 0 mod 2 is required.
– If z = 1 mod 4, then s 6= t mod 2 is required.
– If z = 2 mod 4, then s = t = 1 mod 2 is required.
– If z = 3 mod 4, no integral solutions exist.

If either z cannot be written as a sum of squares, or z, s, t do not satisfy the
above equations, we simply sample a new small generator α and start over.

Given a compatible solution (z0, z1), we compute a1 = (z0 + s)/2 and b1 =
(z1 + t)/2 and also, a2 = s − a1 and b2 = t − b1. Finally, this gives β1 =
n(a1 + b1i) + α, β2 = n(a2 + b2i) + α and the equivalent ideals I1 = χI(β1) and
I2 = χ(β2). The resulting algorithm is summarized in Algorithm 2.

Algorithm 2 Qlapoti(J)

Input: Left O0-ideal J .
Output: Equivalent ideals I1 and I2 with nrd(I1) + nrd(I2) = 2e.
1: I ← SmallestEquivIdeal(J); . Lemma 11,12 [14]
2: n← nrd(I);
3: α← SmallGenerator(I); . write α = aα + bαi+ cαj+ dαk for aα, bα, cα, dα ∈ 1

2
Z

4: r ← nrd(α)/n;
5: if gcd(2aα, n) 6= 1 and gcd(2bα, n) 6= 1 then goto line 3
6: Compute shortest (s, t) such that 2aαs+ 2bαt = 2e − 2r mod n . See Lemma 2

7: Set z := 2(2e − 2r − 2aαs− 2bαt)/n− s2 − t2;
8: if z < 0 then goto line 3
9: if z ≡ 0 (mod 4) and not s = t = 0 mod 2 then goto line 3
10: if z ≡ 1 (mod 4) and not s 6= t mod 2 then goto line 3
11: if z ≡ 2 (mod 4) and not s = t = 1 mod 2 then goto line 3
12: if z ≡ 3 (mod 4) then goto line 3
13: sol← Cornacchia(z) . May return ⊥ if no solution is found
14: if sol = ⊥ then goto line 3
15: z0, z1 ← sol . z20 + z21 = z
16: if z0 6≡ s (mod 2) then swap z0, z1
17: a1 ← (z0 + s)/2, b1 ← (z1 + t)/2;
18: a2 ← s− a1, b2 ← t− b1
19: β1 = n(a1 + b1i) + α, β2 = n(a2 + b2i) + α;
20: I1 = χI(β1), I2 = χI(β2)
21: return I1, I2;

4 Statistical analysis and failure probability of Qlapoti

In this section, we provide an in-depth statistical analysis of the failure proba-
bility of Qlapoti (Algorithm 2). To this end we compute the expected number
of α’s required for Qlapoti to terminate. We refer to Section 5 for the statistics
obtained by our implementation.

We first study the following two random variables:
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– let δ := n/
√
p be the random variable over the domain of all ideal classes [I]

with I ⊂ O0, where n denotes the norm of the smallest equivalent ideal in
the class [I],

– for fixed n, let εn :=
√
s2 + t2/

√
n denote the random variable over the

domain a, b, c ∈ Z/nZ with gcd(a, n) = 1 and n - b, and where (s, t) is a
solution of smallest norm to the linear equation ax+ by = c mod n.

For a discrete random variable X, we denote with fX the probability mass
function and with FX the cumulative distribution function.

Distribution of smallest equivalent ideal. Consider the random variable
δ := n/

√
p introduced above, then we we know from Lemma 1 that δ ≤ 2

√
2/π ≈

0.90. However, we get a more detailed understanding by studying its probability
mass function fδ, shown in Figure 2.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

x

f δ
(x
)

Fig. 2. Probability mass function fδ for δ := n/
√
p

In the SQIsign specification document [3, Section 9.3], a simple counting
argument is given that not only explains the shape of fδ, but also why it is
practically independent of p. For completeness, we repeat the argument here.
The number of left O0-ideals of given norm m is ψ(m) where ψ is the Dedekind
psi function:

ψ(m) = m
∏
`|m

(1 + 1/`) .
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The number of ideals of norm smaller than a given bound M therefore is∑
m≤M

ψ(m) ' ζ(2)

2ζ(4)
M2 =

15

2π2
M2 .

Since there are ∼ p/12 ideal classes, if we assume that ideals of small norm fall
into different classes we would get

Fδ(x) = Pr(δ < x) ' 90

π2
x2 .

In the order O0, this assumption is clearly not satisfied, as for example, all the
elements of the form a+bi generate principal ideals, which correspond to a large
portion of the small normed ideals, but this does not fundamentally change the
quadratic behavior of the cumulative probability distribution for small enough
x. Our own experiments back up those of [3] and result in the estimate

Fδ(x) = Pr(δ < x) ' 6.46

2
x2 .

By taking the derivative, we finally obtain that fδ ' 6.46 · x for x small enough.
From Figure 2 we can see that the linear behavior holds for x < 0.5. For x ≥ 0.5
the dependencies take over, and fδ quickly drops down to 0.

Distribution of 2-norm of smallest solution of ax + by = c mod n.
Equation (10) is of the form ax + by = c mod n where gcd(a, n) = 1 and n - b.
Let εn :=

√
s2 + t2/

√
n denote the random variable defined above, where (s, t)

is a solution of smallest norm.
The following example shows that it is impossible to bound εn by a constant

independent of n: assume that n is odd, and set a = (n−2), b = 2 and c = 1, then
the smallest solution is (s, t) = (1,−(n− 3)/2), for which εn '

√
n/2. However,

such examples occur with probability O(1/n), so the probability mass of fεn will
be concentrated on a finite interval. Furthermore, although the tail of fεn clearly
depends on n, fεn quickly converges to some fixed fε for n→∞. Figure 3 plots
the probability mass function fε, Figure 4 shows the rapid convergence of the
fεn towards fε, and finally, Figure 5 shows the cumulative distribution Fε.

The functions fεn were estimated for various n, by sampling 107 random val-
ues a, b, c ∈ (Z/nZ)3, with a invertible, and b non-zero, and computing the short-
est solution s, t solving as+ bt ≡ c (mod n), and evaluating εn =

√
s2 + t2/

√
n.

As Figure 4 shows, the functions quickly converge towards fε, already at n = 215.
In practice, n will be much larger than this, thus we conclude that fε accurately
represents the relevant probability distributions.

Expected number of α’s. Now that we have analyzed the probability mass
functions fδ and fε, we can finally derive an expression for the expected number
of α’s required for Qlapoti to terminate. We first list the necessary and sufficient
conditions on the tuple (α, s, t).
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Fig. 3. Probability mass function fε of εn =
√
s2 + t2/

√
n for large n
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n = 221
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Fig. 4. The functions fεn for n = 26, 29, 212, . . . , 230, and n = 2256, showing the rapid
convergence towards fε.
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Fig. 5. Cumulative distribution function Fε of εn =
√
s2 + t2/

√
n for large n

To obtain small solutions to Equation (10) we assumed that gcd(2aα, n) = 1
or that gcd(2bα, n) = 1 (see check in Step 5). As a first approximation, we
assume that 2aα, 2bα, n are random integers (recall that aα, bα ∈ 1

2Z). Then the
probability that both pairs are not coprime is (1 − 6/π2)2 ' 0.15372, so we
succeed with probability ' 0.84628. Note that the assumption that n behaves
as a random integer is not quite correct, as shown in [10]. For example, n will be
even with probability 5/8 instead of 1/2. To simplify the analysis we did not take
this more complex behaviour into account as it will not fundamentally change
our conclusions.

For such α, we consider the smallest corresponding (s, t). Equation (9) re-
quires that w = 2e − 2r − 2aαs − 2bαt > 0. Since 2e ∼ p/(4f), n ∼ δ

√
p

and thus s, t ∼ 4
√
δ2p, this condition is easily satisfied as long as r � p and

aα, bα � p3/4/
√
δ. Note that aα, bα can be assumed to be reduced modulo n, so

the latter condition is always satisfied.
A necessary condition for Equation (11) to have a solution is that 2w >

n(s2 + t2) (see check in Step 8). As argued before, w ' 2e − o(2e), so it suffices
that

2e+1 > δ2ε2p,

where we used that ε =
√
s2 + t2/

√
n and δ = n/

√
p. Recall that p = f2e+2−1 for

some small cofactor f , then a necessary condition for the algorithm to terminate
is

2f < δ−2ε−2 .

Since δ is fixed for a given input ideal, the smallest solution (s, t) has to satisfy

ε < 1/δ
√

2f .
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Denote u := 1/δ
√

2f . Since we know the cumulative distribution Fε, the number
of α’s to try is explicitly given by 1/Fε(u).

Using the worst-case bound for δwc = 2
√

2/π and the average-case bound
δac = 0.37, we can explicitly compute the number of α’s required for a small
solution (s, t) to exist and for Equation (11) to have positive RHS. We call such
(α, s, t) tuple good. We compute this for the three SQIsign parameter sets in
Table 1.

NIST Level p e uwc #α (wc) uac #α (ac)

I 5 · 2248 − 1 246 0.351 3.23 0.851 1.18
III 65 · 2376 − 1 374 0.097 37.7 0.236 6.66
V 27 · 2500 − 1 498 0.151 15.7 0.366 3

Table 1. Required number of good (α, s, t) tuples for SQIsign parameter sets.

Now that we have α and (s, t) such that Equation (11) potentially has a
solution, we still need to find it. First, this requires that z can be written as
a sum of two squares. By a theorem of Landau [24], the number of positive
integers smaller than some bound B that can be written as a sum of two squares
is asymptotically

λB√
log(B)

,

with λ ' 0.76422 the Landau–Ramanujan constant. Note that z is bounded by
B = 2e+1/δ

√
p ∼ √p/(2fδ). Taking the extra modulo 4 restrictions on z, s, t

into account, which hold with probability 1/4, we conclude we need to try on
average

5.23
√

log(
√
p/(2fδ)) (12)

good (α, s, t) tuples before finding a solution. The above analysis assumes we
would compute a full factorization of z, which is not the case in practice. In par-
ticular, we use trial division with a bound up to 500, and then test the reminder
for primality. We can derive a worst case bound by simply only considering
primes z = 1 mod 4. This would result in a worst case bound of

8 log(
√
p/(2fδ)) (13)

good (α, s, t) tuples to try. Combining these results with Table 1, we finally
obtain the range for the overall number of α’s to try. In Table 2 we list the
worst-case (wc) scenario, where we combine the worst case from Table 1 with
Equation (13) and the optimal case (oc) where we combine the average case from
Table 1 with Equation (12). Note that these (wc) numbers give an upper bound
on the average number of α’s we need to try to succeed.
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NIST Level p e #α (wc) #α (oc)

I 5 · 2248 − 1 246 2185 57
III 65 · 2376 − 1 374 38495 395
V 27 · 2500 − 1 498 21484 206

Table 2. Average number of α’s required for Qlapoti to terminate.

To simplify the implementation of the 2D-step, one requires that I1 and I2
are odd norm and coprime. If one takes this restriction into account, the numbers
in Table 2 have to be multiplied by π2/2 ∼ 4.93.

Failure probability for SQIsign parameters. Finally, we count the number
of choices of generators α that we have available for a fixed instance, to see that
it is exponential in log n, and derive the final failure probabilities for the SQIsign
parameters. We employ the fact that O/nO ' M2(Z/nZ), and thus I/nO can
be identified with a (necessarily) principal, non-trivial left ideal in M2(Z/nZ).

By [22, Lemma 7.2], I/nO can be generated by an element of the form
(
x y
0 0

)
.

Furthermore, like for all principal ideals, all other generators are obtained by
acting with M2(Z/nZ)× = GL2(Z/nZ). Since(

a b
c d

)(
x y
0 0

)
=

(
ax ay
cx cy

)
,

we see that the generators of I/nO are in bijection with pairs a, c ∈ Z/nZ such
that gcd(a, c, n) = 1 (it is easy to see that this is a necessary and sufficient

condition to find b, d such that
(
a b
c d

)
∈ GL2(Z/nZ)). The number of such pairs

is

n2
∏
p|n

(
1− 1

p2

)
> n2

∏
p prime

(
1− 1

p2

)
= n2

1

ζ(2)
= n2

6

π2
≈ 0.607927n2,

where ζ(s) denotes the Riemann zeta function, and ζ(2) = π2

6 is famously clas-
sical.

The norm condition on the lift of these generators implies that the coefficients
cα, dα should satisfy

2e > 2nrd(α)/n ≈ 2 · p(c2α + d2α)/n,

and thus it suffices that

|cα|, |dα| <
√
n

√
2e

4p
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Assuming these behave as random integers between 0 and n, this happens with
probability (√

n

n

√
2e

4p

)2

=
2e

4pn
.

Thus the expected number of suitable α’s is ≈ 0.607927n · 2
e

4p .
We now compute the minimal n such that Qlapoti fails with probability less

than 2−(λ+1). Here we make the assumption that the probability of success per
α is the same for all α. The probability for Qlapoti to terminate therefore follows
a geometric distribution. Let c denote the mean of this distribution, i.e. the
average number of α’s required to terminate, then the probability of success for
a single α is q = 1/c. The probability that Qlapoti fails to terminate within k
steps, i.e. k α’s, is (1− q)k, and we thus require (1− q)k < 2−(λ+1). Taking log’s
and using log(1−x) ' −x for small x gives k > (λ+1) log(2)c. Therefore Qlapoti
is guaranteed to terminate for all n that satisfy

n > (λ+ 1) · 4 log(2) · p · c
0.607927 · 2e

.

Let L denote the right hand side of the above equation. Then as a very crude
estimate, we assume that Qlapoti always fails whenever n ≤ L, and it fails with
probability < 2−(λ+1) for n > L, so we obtain:

P (Qlapoti fails) < P (n ≤ L) + P (Qlapoti fails | n > L) < Fδ(L/
√
p) + 2−(λ+1),

As before, Fδ(L/
√
p) ≈ 6.46

2 (L/
√
p)2, and thus we obtain a lower bound on the

failure rate by finding the largest λ such that

2−(λ+1) >
6.46

2
(L/
√
p)2 =

6.46

2
·
(

(λ+ 1) ·
4 log(2) · √p · c
0.607927 · 2e

)2

,

as this gives P (Clapoti fails) < 2−(λ+1) + 2−(λ+1) = 2−λ. Specifically, for the
SQIsign parameter sets, we can read off c from Table 1, and obtain the final
failure probabilities, which are confidently within the security level (see Table 3).

NIST Level p c e upper bound on failure rate

I 2248 · 5− 1 2185 246 2−197

III 2376 · 65− 1 38495 374 2−312

V 2500 · 27− 1 21484 498 2−438

Table 3. The final upper bound of the failure rate of Qlapoti applied to the SQIsign
parameters.
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Remark 1. We also remark that the failure rate can even be further improved by
trying more (s, t) pairs. Indeed, the algorithm fails only when n is tiny, in which
case there is no restriction on (s, t) being “short” (relative to n) anymore, and one
can rerandomize by trying new (s, t) pairs instead. Thus, we can essentially get an
algorithm that always works, as long as there is a single α that is small enough.
However, given that the simpler algorithm already has completely negligible
failure probability for practical purposes, we decided to stick with the simpler
description of our algorithm.

5 Implementation and Results

In this section we discuss some implementation details and optimisations, before
presenting our results. Our implementation is available at

https://github.com/KULeuven-COSIC/Qlapoti

5.1 Reusing lattice reductions

In our implementation, Algorithm 2 is implemented exactly as described, except
for the small practical improvement that we rerandomize α by trying new λα
for small integers λ satisfying gcd(λ, n) = 1. This has the advantage of being
cheaper to find short s, t pairs (Line 6), since the CVP instance will be for the
same lattice (but with a new target vector), thus saving one lattice reduction
and matrix inversion per iteration.

5.2 Non-gluing isogenies

Recall that after Algorithm 2 outputs a solution, IdealToIsogeny proceeds by
deriving the kernel of the corresponding isogeny Φ : E0 × E0 → EJ × E′ to be

kerΦ = 〈([d1]P0, θ(P0)), ([d1]Q0, θ(Q0))〉 for E0[2e] = 〈P0, Q0〉.

Endomorphisms. According to [21, Thm. 3], the first (2, 2)-isogeny will land
on a product of elliptc curves (instead of gluing into a Jacobian) if and only if
its kernel is the graph of an automorphism, on E0 restricted to the 2-torsion.
Since d1 is odd, in our case the kernel is of the form {(P, θ(P )) | P ∈ E0[2]}. To
land on a product, we thus have only two possibilities, namely θ(P ) = P and
θ(P ) = iP for P ∈ E0[2].

Expressing θ in the Z-basis for O0 we have θ = x1 +x2i+x3
i+j
2 +x4

1+k
2 , for

some xi ∈ Z. We note that if either x3 or x4 is odd, neither of these two cases
can happen. Thus, we restrict to the case θ = x1 + x2i+ x3j+ x4k, with xi ∈ Z.
Moreover, both i + j and 1 + k are trivial on the 2-torsion. The action of θ on
E0[2] can therefore be described by

θ mod 2 = (x1 + x4 mod 2) + (x2 + x3 mod 2)i.

https://github.com/KULeuven-COSIC/Qlapoti
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The non-gluing cases will be the ones in which exactly one of the two coefficients
is 1 (note that they cannot be both 0, since otherwise θ would have even norm).
For instance, if x1 +x4 mod 2 = 1 (and thus x2 +x3 mod 2 = 0 by assumption),
then θ acts as the identity on E0[2].

If we are in one of those two cases, to compute the first step we need to
determine the (2, 2)-isogeny ρ whose kernel coincides with the first step of the
kernel of Φ. Following the discussion above, it is immediate that if x1 + x4 ≡
1 mod 2 then we have ker(ρ) = {(P, P )|P ∈ E0[2]}; if otherwise x2 + x3 ≡
1 mod 2 then ker(ρ) = {(P, iP )|P ∈ E0[2]}. From this we deduce

ρ((P,Q)) :=

{
(P +Q,P −Q), if x1 + x4 ≡ 1 mod 2

(i(P ) +Q, i(P )−Q), if x2 + x3 ≡ 1 mod 2
.

In particular, after applying ρ the kernel of the remaining steps will be

K1 := 〈(P1, P2), (Q1, Q2)〉 := 〈(θ+(P0), θ−(P0)), (θ+(Q0), θ−(Q0))〉,

where

θ± :=

{
d1 ± θ, if x1 + x4 ≡ 1 mod 2

d1i± θ, if x2 + x3 ≡ 1 mod 2
.

Notice that since the θ± are divisible by 2, the new kernel indeed has the correct
order 2e−1.

The next question is whether this phenomenon can repeat in the following
steps. We restrict to the case x1 +x4 ≡ 1 mod 2; the other case follows similarly.
In this case, the kernel of the next (2, 2)-isogeny step is given by

[2e−2]K1 =

{((
θ+

2

)
P,

(
θ−

2

)
P

) ∣∣∣∣ P ∈ E0[2]

}
.

To deduce whether this is again the graph of an automorphism, we need to check
whether [2e−2]K1 is in the form {(P, P ) | P ∈ E0[2]} or {(P, iP ) | P ∈ E0[2]}.

To do so, we first express both θ±/2 in the standard Z-basis for O0. We
first note that the constant term is d1∓(x1−x4)

2 . These two quantities will differ
modulo 2 since x1 − x4 is odd, and as such the kernel cannot be the graph of
the identity. To see why this kernel cannot be the graph of i, we observe that
applying i on the 2-torsion simply permutes the coefficients. Conversely, the
coefficients of θ+/2 and θ−/2, when considered modulo 2, differ in exactly one
component. Therefore, we rule out this case as well, and after the first step we
cannot have another endomorphism.

Diagonal isogenies. After this first step however there may still be diagonal
steps. Namely, the i-th step can be of the form Φi = (ϕ

(1)
i , ϕ

(2)
i ), where ϕ(1)

i and
ϕ
(2)
i are one dimensional 2-isogenies.
This will happen if (P, 0) ∈ ker(Φi), or equivalently if the norm of θ+/2 has

non-trivial 2-valuation. Note that as already observed, this can never be the case
with θ itself, further showing that the first step cannot be diagonal.
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Number of diagonal steps. We first detect the number of diagonal steps we take
after the first step (before gluing to a Jacobian). Since the kernel of each step
must be isotropic, the kernel of a diagonal step will be of the form

{(P, 0), (0, Q), (P,Q), (0, 0)}.

for 2-torsion points P and Q. As a result, the 2-valuation of norm of θ+/2 is the
same as that of θ−/2. Furthermore, this shows that θ+/2 cannot factor through
multiplication by 2, as otherwise P would be in the kernel of θ+/2 as well. The
number of diagonal steps will then be exactly the 2-valuation of nrd(θ+/2).

The shape of the kernel. Next, we determine the kernel of the diagonal steps. A
key observation is that we only need to determine the shape of the kernel once
after the first step. Indeed, let v = v2(nrd(θ+/2)) be the 2-valuation, and set
D = 2e−v−1. The kernel of the diagonal steps will be

[D]K1 = 〈([D]P1, [D]P2), ([D]Q1, [D]Q2)〉

Since this kernel is isotropic, it must be isomorphic to Z2v × Z2v , and since the
order of all elements divides 2v one among [D]P1 and [D]Q1 and one among
[D]P2 and [D]Q2 respectively must have order 2v.

Assume [D]P1 has full order. As the point ([2e−2]P1, 0) must be in the kernel,
[D]P2 cannot have full order. Therefore, for a diagonal step Φi = (ϕ

(1)
i , ϕ

(2)
i ), we

have that

ker(ϕ
(1)
i ) := 〈[D]P1〉 or 〈[D]Q2〉,

ker(ϕ
(2)
i ) := 〈[D]P2〉 or 〈[D]Q1〉.

One way to detect which of the cases we are in is, for instance, to check the order
of the pairing e2e(P1, Q2). Note that this can be expressed as a linear combination
of e2e(P0, Q0), e2e(P0, iQ0), and so on. All these quantities can be precomputed,
making this method quite efficient. Another solution would be to precompute
the three norm-2 left ideals in O0 and the corresponding kernels on the 2-torsion,
and check which one corresponds to O0(θ+/2) +O02 and O0(θ−/2) +O02.

5.3 Results

We now present the results of our implementation of Qlapoti in both SageMath
and C. We first present statistics on the number of rerandomizations, and see
that it matches well with the theoretical results obtained in Section 4. We then
present the benchmarks on performance, both related to timings and memory
usage.

Statistics. We ran our implementation of Qlapoti 10,000 times for each security
level and measured the number of rerandomizations needed, to compare against
Table 2. The results are presented in Table 4. On average, our random instances
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NIST Level predicted #α (wc) predicted #α (oc) avg. #α

I 2185 57 65.45
III 38495 395 569.2
V 21484 206 351.6

Table 4. The predicted number of rerandomizations (taken from Table 2), compared
to the observed average number of rerandomizations. The observed numbers were mea-
sured over 10,000 runs.

behave closely to the predicted optimal-case assumptions. This adds confidence
to the already negligible failure rate reported in Section 4, which was computed
under the predicted worst-case assumptions. Further, we used our data to ver-
ify the assumption that the success probability behaves independently on the
sampled α’s (see Figure 6).

0 100 200 300 400 500
0

0.5

1

1.5

2
·10−2

x

p
(x
)

Fig. 6. The observed probabilty p(x) of requiring exactly x values of α for Qlapoti
to terminate over 10,000 runs (for NIST Level 1) in blue, compared to a geometric
distribution given by the mean in red.

Timings and measurements. With our SageMath implementation, we com-
pare directly with the SageMath implementation of IdealToIsogeny from [7]. The
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results were obtained by measuring the average over 500 runs, on an Intel Core
Ultra 7 165H. The results can be found in Table 5.

NIST level Previous work [7] This work Improvement

I 0.434s 0.166s x2.6
III 0.849s 0.386s x2.2
V 1.143s 0.490s x2.3

Table 5. Timings comparing IdealToIsogeny using the technique currently used in
SQIsign and the one presented in this work, given in wall-clock time. The final column
represents the improvement factor.

We also give results for our implementation of Qlapoti in C, using the NIST
round 2 implementation of SQIsign [2]. Before discussing the impact of Qlapoti on
SQIsign, we point out that for the C implementation, we restrict Qlapoti to only
output isogenies that do not contain any diagonal isogenies, thus we also give
new SageMath timings with this restriction. This is because the x-only arith-
metic creates additional complications when evaluating an embedded isogeny
that contains diagonal steps. This in turn leads to extra rerandomizations, and
the improvement factor becomes lower, as seen in Table 6.

Conceptually, the limitation of restricted Qlapoti outputs can be easily over-
come by implementing xy-arithmetic for the diagonal steps. However, this would
be the only place in the SQIsign-implementation where xy-arithmetic is needed,
thus leading to a lot of extra code complexity for a (potentially) small gain.
We leave it as future work to optimize either the potential diagonal steps, or
improving Qlapoti with restricted outputs.

NIST level Previous work [7] This work Improvement

I 0.434s 0.171s x2.5
III 0.849s 0.446s x1.9
V 1.143s 0.515s x2.2

Table 6. Timings comparing IdealToIsogeny in SageMath, when restricting Qlapoti to
not output diagonal isogenies. Compared to Table 5, we see that the improvement
factor is lower with this restriction.

In Table 7, we give benchmarks which measure the improvement gained for
the key generation and signing procedure of SQIsign and PRISM. The SageMath
timings are given using the same setup as above. The C implementation tim-
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ings are given over 10,000 runs. It was compiled with gcc, with the CMAKE op-
tions -DSQISIGN_BUILD_TYPE=ref -DCMAKE_BUILD_TYPE=Release on an Intel
i7-11850H processor with turboboost disabled.

We note that the relative improvement IdealToIsogeny is currently lower in C
than in SageMath. We explain this observation by noting that, in C, the quater-
nion operations are more costly (relative to the finite field operations) than in
SageMath, since those cannot benefit from the optimized field arithmetic, and
instead uses unbounded integers. This is especially noticable in Level III and
V, which has the biggest cofactor (ref. Table 3), which negatively impacts the
running time of Qlapoti. Thus, these higher levels would benefit the most from al-
lowing the earlier mentioned diagonal steps, as it effectively halves the expected
running time of Qlapoti.

Protocol Algorithm Previous work This work Improvement

SQIsign-LVLI
KeyGen 123 Mcy 67.5 Mcy x1.8
Signing 282 Mcy 172 Mcy x1.6

SQIsign-LVL3
KeyGen 315 Mcy 287 Mcy x1.1
Signing 719 Mcy 667 Mcy x1.1

SQIsign-LVL5
KeyGen 516 Mcy 355 Mcy x1.5
Signing 1218 Mcy 900 Mcy x1.4

PRISM-LVLI
KeyGen 0.484s 0.252s x1.9
Signing 0.593s 0.322s x1.7

PRISM-LVL3
KeyGen 0.915s 0.544s x1.7
Signing 1.328s 0.808s x1.6

PRISM-LVL5
KeyGen 1.436s 0.758s x1.9
Signing 2.017s 1.426s x1.4

Table 7. Benchmarks to measure the impact of Qlapoti on the signature schemes
SQIsign and PRISM. The comparison with PRISM is in SageMath, with the implemen-
tation from [7], while the comparison with SQIsign is in C, compared against the NIST
round 2 submission [2]. The timings in SageMath are given in wall-clock time, while
the measurements in C are given in Megacycles.

We also present a comparison of the memory consumption. This metric is
important when considering execution on constrained devices. Despite SQIsign’s
large runtimes, there has been recent work on porting it to smaller CPUs, such
as the Cortex-M4 [1]. However, signing proved to be less portable than verifi-
cation, due not only to its slowness, but also to its memory management. In
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particular, the large amount of dynamically allocated memory (mostly through
the GMP library), as well as the overall memory usage, presents a challenge for
portability [1, Remark 5].

As previously discussed, the large memory footprint in the SQIsign NIST
submission (round 2) is mostly due to the previous IdealToIsogeny algorithm,
which needed to compute large tables of short elements in 7 ideals (or 8 at level
3). In Table 8 we present a comparison of the heap memory usage when using
Qlapoti instead.

NIST Level Previous work [2] This work Improvement

I 0.42 MiB 38 KiB x11
III 1.9 MiB 56 KiB x34
V 1.7 MiB 74 KiB x23

Table 8. Heap usage by a reference/Release build of the SQIsign NIST2 implementa-
tion with and without Qlapoti, as measured by valgrind’s massif tool. Average over
100 runs on same machine as C code benchmarks. Measures were taken with the
sqisign_test_scheme_lvl[x] executable for Level x.

Clearly, Qlapoti improves the memory usage significantly, particularly at
higher security levels, and therefore gives hope that SQIsign can also be exe-
cuted on smaller devices in the future, provided that the use of dynamic memory
allocation can be avoided.

Another interesting fact we have observed is that the size of the executable
containing SQIsign also decreases when using Qlapoti in the ideal-to-isogeny com-
putation of SQIsign (see Table 9). Again, this is related to the fact that the pre-
computation data related to the rerandomization procedure currently takes up
a significant portion of the size of the executable.

NIST Level Previous work [2] This work

I 254 KiB 212 KiB
III 278 KiB 221 KiB
V 282 KiB 233 KiB

Table 9. Size of the sqisign_test_scheme_lvl[x] executable, where x is as in the
first column, for a ref/Release build on an intel i5-6300U, compiled with gcc 13.3.
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