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Abstract. Isogeny-based cryptography is cryptographic schemes whose
security is based on the hardness of a mathematical problem called the
isogeny problem, and is attracting attention as one of the candidates for
post-quantum cryptography. A representative isogeny-based cryptogra-
phy is the signature scheme called SQIsign, which was submitted to the
NIST PQC standardization competition. SQIsign has attracted much
attention because of its very short signature and key size among the
candidates for the NIST PQC standardization. Recently, a lot of new
schemes have been proposed that use high-dimensional isogenies. Among
them, the signature scheme called SQIsignHD has an even shorter signa-
ture size than SQIsign. However, it requires 4-dimensional isogeny com-
putations for the signature verification. In this paper, we propose a new
signature scheme, SQIsign2D-East, which requires only two-dimensional
isogeny computations for verification, thus reducing the computational
cost of verification though increasing the signing cost. First, we general-
ized an algorithm called RandIsogImg, which computes a random isogeny
of non-smooth degree. Then, by using this generalized RandIsogImg, we
construct a new signature scheme SQIsign2D-East.

1 Introduction

In recent years, isogeny-based cryptography has been actively studied as one of
the candidates for post-quantum cryptography (PQC). One of the representa-
tive isogeny-based cryptographies is the signature scheme called SQIsign [13],
which was submitted to the NIST PQC standardization competition. SQIsign
has attracted much attention because of its very short signature and key size
among the candidates for the NIST PQC standardization. Another well-known
isogeny-based cryptography is SIDH [20], which is proposed by De Feo and Jao.
Additionally, SIKE [1], a key encapsulation scheme based on SIDH, remained
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an alternative candidate for the NIST PQC standardization competition until
Round 4. However, recent attacks [5,24,28] broke the security of SIDH and
SIKE. These attacks find the secret isogeny from the two point images under
the isogeny by computing high dimensional isogenies.

In response, a number of cryptographic applications of attacks on SIDH have
been studied, such as SQIsignHD [11], FESTA [3], QFESTA [26] SCALLOP-
HD [7], and IS-CUBE [25]. Among them, SQIsignHD is a variant of SQIsign
that has a shorter signature size and higher signing performance than SQIsign.
However, it requires 4-dimensional isogeny computations for signature verifica-
tion, which leads to a large computational cost. Since NIST calls for signature
schemes that have short signatures and fast verification, reducing the verification
cost of SQIsignHD is an important issue.

1.1 Contributions

In this paper, we make the following contributions:

1. We construct a new algorithm GenRandIsogImg, which is a generalization
of the algorithm called RandIsogImg proposed in [26], which computes the
codomain and point images of a given degree isogeny from a special elliptic
curve E0. Our GenRandIsogImg computes the codomain and point images of
a given degree isogeny from any elliptic curve E.

2. Using GenRandIsogImg as a building block, we propose a new variant of
SQIsignHD, which only requires 2-dimensional isogeny computations for the
verification. We name this signature scheme ‘SQIsign2D-East’.

3. We give concrete parameters of SQIsign2D for the NIST security level 1,
3, and 5. Under these parameter settings, we analyse the signature sizes
and show that our signature sizes are smaller than SQIsign and larger than
SQIsignHD.

4. We analyse the computational cost of SQIsign2D-East under the parameter
for the NIST security level 1 and show that the verification cost of SQIsign2D
is smaller than that of SQIsignHD though the signing cost is larger.

1.2 Related Works

At the same time as this work, [2] and [17] also proposed a variant of SQIsignHD
based on 2-dimensional isogenies. The former is called ‘SQIsign2D-West’ and
the later is called ‘SQIPrime’. These protocols are similar to ours, but they were
proposed independently of us. Our protocol has a stronger security assumption
than their protocol but seems to be more efficient. We leave the comparison with
their protocol as future work.

Recently, [27] proposed an algorithm called IdealToIsogenyIQO that makes
the key generation and the signing procedure in SQIsign at least twice as fast.
However, their costs are still larger than SQIsignHD and SQIsign2D-East as
described in their paper.
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1.3 Organization

In Sect. 2, we give some notation and background knowledge used in our protocol.
In Sect. 3, we construct a generalized RandIsogImg. In Sect. 4, we propose our
new signature scheme SQIsign2D-East and its security is analysed in Sect. 5. In
Sect. 6, we give some concrete parameters for SQIsign2D-East and analyse the
data size and the computational cost of SQIsign2D-East. Finally, in Sect. 7, we
give the conclusion of this paper.

2 Preliminaries

In this section, we summarize some background knowledge used in our protocol.

2.1 Notation

Throughout this paper, we use the following notation. We let p be a prime
number of cryptographic size, i.e., p is at least about 2256 and let λ be a security
parameter. Let f(x) and g(x) be real functions. We write f(x) = O(g(x)) if there
exists a constant c ∈ R such that f(x) is bounded by c ·g(x) for sufficiently large
x. For a finite set S, we write x ∈U S if x is sampled uniformly at random from
S. Let ⊥ be the symbol indicating failure of an algorithm.

2.2 Abelian Varieties and Isogenies

In this paper, we mainly use principally polarized superspecial abelian varieties of
dimension one or two defined over a finite field of characteristic p. Such a variety
is isomorphic to a supersingular elliptic curve, the product of two supersingular
elliptic curves, or a Jacobian of a superspecial hyperelliptic curve of genus two,
and always has a model defined over Fp2 . Therefore, we only consider varieties
defined over Fp2 .

Basic Facts. An isogeny is a rational map between abelian varieties which is a
surjective group homomorphism and has finite kernel. The degree of an isogeny
ϕ is its degree as a rational map and is denoted by deg ϕ. An isogeny ϕ is
separable if # ker ϕ = deg ϕ. A separable isogeny is uniquely determined by its
kernel up to post-composition of an isomorphism. For an isogeny ϕ : A → B
between principally polarized abelian varieties, there exists a unique dual isogeny
ϕ̂ such that ϕ̂ ◦ ϕ is equal to the multiplication-by-deg ϕ map on A.

Let ϕ : A → B, ψ : A → C, and ψ′ : B → D be isogenies such that deg ϕ is
coprime to deg ψ. If ker ψ′ = ϕ(ker ψ) holds, we say that ψ′ is the push-forward
of ψ by ϕ and denote it by ψ′ = [ϕ]∗ψ. Under the same situation, we say that ψ
is the pull-back of ψ′ by ϕ and denote it by ψ = [ϕ]∗ψ.

Let A and B be principally polarized abelian varieties. If there exists an
isogeny between A and B then the dimensions of A and B are the same. If A is
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superspecial then there exists an isogeny between A and B if and only if B is a
superspecial abelian variety of the same dimension as A.

Let A be a principally polarized abelian variety and � a positive integer. An
�-isotropic subgroup of A is a subgroup of the �-torsion subgroup A[�] of A on
which the �-Weil pairing is trivial. An �-isotropic subgroup G is maximal if there
is no other �-isotropic subgroup containing G. A separable isogeny whose kernel
is a maximal �-isotropic subgroup is called an �-isogeny if the dimension of the
domain is one or an (�, �)-isogeny if the dimension of the domain is two.

Let E be an elliptic curve defined over Fp2 . Among the isomorphism class
of E, we can chose a Montgomery curve as a canonical representative by using
[6, Algorithm 1]. We call this curve the normalized curve of E. In this paper,
we assume that all elliptic curves are normalized. Moreover, we can compute
a canonical basis of the n-torsion subgroup E[n] defined over Fp2 by using [6,
Algorithm 3]. Especially when n = 2k for a positive integer k, we can compute
a canonical basis of E[n] by the algorithm proposed in [9, Section 5.1].

Computing Isogenies. Let A be a principally polarized abelian variety, � a
positive integer, and G a maximal �-isotropic subgroup of A.

If the dimension of A is one then we can compute an �-isogeny ϕ with kernel
G by Vélu’s formulas [32]. More precisely, given A, �, G, Vélu’s formulas give a
method to compute the codomain of ϕ in O(�) operations on a field containing
the points in G. In addition, for additional input P ∈ A, we can compute ϕ(P ) in
O(�) operations on a field containing the points in G and P . These computational
costs are improved to Õ(

√
�) by Bernstein, De Feo, Leroux, and Smith [4].

For an isogeny ϕ : A → B, we say that information Iϕ is an efficient rep-
resentation of ϕ when we can compute ϕ(P ) in polynomial time from a given
point P ∈ A and the information Iϕ. For example, the tuple (A, �,G) described
above is an efficient representation of �-isogeny ϕ : A → B when � is smooth.

If A is the Jacobian of a hyperelliptic curve of genus two and � = 2 then we
can compute (2, 2)-isogeny by formulas in Smith’s Ph.D thesis [30]. Formulas
of (2, 2)-isogenies for the case A is the product of two elliptic curves is given
by Howe, Leprévost, and Poonen [19]. In 2023, more efficient formulas of (2, 2)-
isogenies is proposed by Dartois, Maino, Pope, and Robert [12]. In addition, an
efficient formulas of (3, 3)-isogenies is proposed by Corte-Real Santos, Costello
and Smith [29]. An algorithm to compute (�, �)-isogenies for a general � was given
by [10] and later improved by [23]. The computational cost of this algorithm is
O(�2) operations on a field containing the points in G.

2.3 Quaternion Algebras and the Deuring Correspondence

Quaternion Algebras. A quaternion algebra over Q is a division algebra
defined by Q + Qi + Qj + Qk and i2 = a, j2 = b, ij = −ji = k for a, b ∈ Q

∗. We
denote it by H(a, b). We say H(a, b) is ramified at a place v of Q if H(a, b)⊗QQv

is not isomorphic to the algebra of the 2 × 2 matrices over Qv. There exists a
quaternion algebra ramified exactly at p and ∞. Such an algebra is unique up
to isomorphism. We denote it by Bp,∞.
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Let α = x + yi + zj + tk ∈ H(a, b) with x, y, z, t ∈ Q. The conjugate of α is
x − yi− zj− tk and denoted by ᾱ. The reduced norm of α is αᾱ and denoted by
n(α).

An order O of H(a, b) is a subring of H(a, b) that is also a Z-lattice of rank
4. This means that O = Zα1 + Zα2 + Zα3 + Zα4 for a basis {α1, α2, α3, α4} of
H(a, b). We denote such an order by Z〈α1, α2, α3, α4〉. An order O is said to be
maximal if there is no larger order that contains O.

For a maximal order O, an (integral) left O-ideal I is a Z-lattice of rank
4 satisfying I ⊂ O and O · I ⊂ I. An right O-ideal is similarly defined. For
an ideal I, we denote its conjugate by Ī = {ᾱ | α ∈ I}. We denote by n(I)
the reduced norm of ideal I, defined as (the unique positive generator of) the
Z-module generated by the reduced norms of the elements of I. A left O-ideal I
of integer norm can be written as I = Oα + On(I) for some α ∈ I. We denote
such I by I = O〈α, n(I)〉. The ideal equivalence denoted by I ∼ J means that
there exists β ∈ B∗

p,∞ such that I = Jβ.

Deuring Correspondence. Deuring [16] showed that the endomorphism ring
of a supersingular elliptic curve over Fp2 is isomorphic to a maximal order of
Bp,∞ and gave a correspondence (the Deuring correspondence) where a super-
singular elliptic E curve over Fp2 corresponding to a maximal order isomorphic
to End(E).

Suppose p ≡ 3 (mod 4). This is the setting we use in our protocol. Then
we can take Bp,∞ = H(−1,−p) and an elliptic curve over Fp2 with j-invariant
1728 is supersingular. Let E0 be the elliptic curve over Fp2 defined by y2 =
x3 + x. Then j(E0) = 1728, so E0 is supersingular. We define endomorphisms
ι : (x, y) �→ (−x,

√−1y) and π : (x, y) �→ (xp, yp) of E0, where
√−1 is a

fixed square root of −1 in Fp2 . The endomorphism ring of E0 is isomorphic to
O0 := Z〈1, i, i+j

2 , 1+k
2 〉. This isomorphism is given by ι �→ i and π �→ j. From

now on, we identify End(E0) with O0 by this isomorphism.
Some isogeny-based protocols, e.g., SQISign [13], need to compute the image

under an element in O0 represented by the coefficients with respect to the basis
(1, i, i+j

2 , 1+k
2 ). Let P ∈ E0(Fp2) and α = x + yi + z i+j

2 + t 1+k
2 for x, y, z, t ∈

Z. Given P and x, y, z, t, one can compute α(P ) in O(log max{|x|, |y|, |z|, |t|})
operations on Fp2 and O(log p) operations on Fp4 . The latter operations on Fp4

is necessary only for the case when the order of P is even. We need to compute
α(P0) and α(Q0) for a fixed basis P0, Q0 of E0[2a] for some integer a in our
protocol. In this case, by precomputing the images of P0 and Q0 under i, i+j

2 ,
and 1+k

2 , we can compute α(P0) and α(Q0) by scalar multiplications by x, y, z, t
and additions.

The Deuring correspondence also gives a correspondence between isogenies
and ideals. Let E1 be a supersingular elliptic curve over Fp2 and let O1 be a
maximal order of Bp,∞ such that O1

∼= End(E1). Let φ : E1 → E2 be an N -
isogeny, then the isogeny φ can be associated to a left O1-ideal Iφ. This ideal
Iφ is also a right O2-ideal for a maximal order O2 satisfying O2

∼= End(E2).
Such an ideal Iφ is called a connecting ideal from O1 to O2. Furthermore, it is
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known that its norm n(Iφ) is equal to the degree N of φ. The order O denoted
by O = O1 ∩O2 is called the Eichler order and O = Z+Iφ holds. Moreover, two
isogenies φ, ψ : E1 → E2 that have the same domain and codomain correspond
to equivalent ideals Iφ ∼ Iψ.

Let Iτ be a connecting ideal of norm d from O0
∼= End(E0) to O1

∼= End(E1)
and let τ : E0 → E1 be the corresponding isogeny. In our protocol, we need
to compute the image under an endomorphism α1 ∈ End(E1) represented as
an element α ∈ O0 ∩ O1. Since α ∈ O0, we can compute the image under the
corresponding endomorphism α0 ∈ End(E0) as described above. Then, if the
order n of P ∈ E1 is coprime to d, we can compute α1(P ) as follows:

α1(P ) =
1
d
τ ◦ α0 ◦ τ̂(P ),

where
1
d

is an inverse of d modulo n.

Algorithms Using Quaternion Algebras. As in the above, we let O0 be the
maximal order of Bp,∞ with basis (1, i, i+j

2 , 1+k
2 ). Here, we introduce some exist-

ing algorithms using quaternion algebras necessary for the construction of our
SQIsign2D-East. These algorithms are used in SQISign (see the official document
[6] for details).
– FullRepresentIntegerO0

(M): Take an integer M > p as input, output α ∈
O0 such that n(α) = M .

– EichlerModConstraint(I, γ, δ): Take a left-O0 ideal I of prime norm N and
γ, δ ∈ O0 as input, output (C0 : D0) ∈ P

1(Z/NZ) such that γ(C0j+ D0k)δ ∈
Z + I.

– StrongApproximationM (N,C0,D0): Take integers M,N,C0 and D0 as
input, output μ ∈ O0 such that n(μ) = M and μ = m(C0j + D0k) + Nμ1,
where m ∈ Z and μ1 ∈ O0.

2.4 Computing Isogenies of Dimension One from Dimension Two

In this subsection, we give an algorithm to compute isogenies of dimension one
by using an isogeny of dimension two, which is an important sub-algorithm for
our protocol. This algorithm comes from recent attacks to SIDH by [5,24,28].
We use the following theorem, which is based on Kani’s criterion [21].

Theorem 1 ([24, Theorem 1]). Let N1, N2, and D be pairwise coprime inte-
gers such that D = N1 + N2, and let E0, E1, E2, and E3 be elliptic curves
connected by the following diagram of isogenies:

E0
ψ2 ��

ψ1

��

E2

ψ′
1

��
E1

ψ′
2

��

f
����������
E3,



278 K. Nakagawa et al.

where ψ′
2 ◦ ψ1 = ψ′

1 ◦ ψ2, f = ψ2 ◦ ψ̂1, deg(ψ1) = deg(ψ′
1) = N1, and deg(ψ2) =

deg(ψ′
2) = N2. Then, the isogeny

Φ =
(

ψ̂1 −ψ̂2

ψ′
2 ψ′

1

)
: E1 × E2 → E0 × E3 (1)

is a (D,D)-isogeny with respect to the natural product polarizations on E1 × E2

and E0 × E3, and has kernel {([N2]P, f(P )) | P ∈ E1[D]}.

Conversely, a (D,D)-isogeny with kernel {([N2]P, f(P )) | P ∈ E1[D]} is of the
form ι◦Φ with an isomorphism ι from E0 ×E3. To construct algorithms to eval-
uate the isogenies in the matrix in Eq. (1), we need to restrict the possibility of
ι. In particular, we assume that the codomain E3 of ψ′

1 and ψ′
2 is not isomorphic

to E0. This assumption is plausible because there exist about p/12 supersingular
elliptic curves over Fp2 up to isomorphism and ψ′

1 seems to be a random isogeny
unless we intend to have E1

∼= E3. Under this assumption, an isomorphism from

E0 × E3 is represented by
(

ι0 0
0 ι3

)
or

(
0 ι3
ι0 0

)
, where ι0 is an isomorphism from

E0 and ι3 is an isomorphism from E3. Since we assume that E0 and E3 are
normalized, we can determine the codomain of Φ in only two ways: E0 × E3 or
E3 × E0.

Using Theorem 1 and assuming the above assumption, we construct an algo-
rithm to evaluate the isogenies in the matrix in Equation (1) by computing a
(D,D)-isogeny. We denote the algorithm by KaniCod.

Let N1, N2 be integers coprime with each other and D = N1 + N2. Let
E1, E2 supersingular elliptic curves over Fp2 , (P1, Q1) a basis of E1[D], (P2, Q2)
a basis of E2[D], S1 a finite subset of E1, and S2 a finite subset of E2. If
there exist isogenies ψ1 : E0 → E1 and ψ2 : E0 → E2 such that deg ψ1 = N1

deg ψ2 = N2, P2 = ψ2 ◦ ψ̂1(P1), and Q2 = ψ2 ◦ ψ̂1(Q1), then KaniCod with
input (N1, N2, E1, E2, P1, Q1, P2, Q2;S1;S2) returns the curve E0, the image of
S1 under ψ̂1, and the image of S2 under ψ̂2. If such isogenies do not exist then
KaniCod returns ⊥. The procedure for KaniCod is as follows:

1. Compute a (D,D)-isogeny Φ with kernel 〈([N2]P1, P2), ([N2]Q1, Q2)〉.
2. If the codomain of Φ is not the product of elliptic curves then return ⊥.
3. Otherwise let F1 × F2 be the codomain of Φ.
4. Let P ′

1 and Q′
1 be first components of Φ((P1, OE2)) and Φ((Q1, OE2)).

5. Compute the D-Weil pairings eD(P1, Q1) and eD(P ′
1, Q

′
1).

6. If eD(P1, Q1)N1 = eD(P ′
1, Q

′
1) then return F1 and the first components of

Φ((R1, OE2)) and Φ((OE1 , R2)) for R1 ∈ S1 and R2 ∈ S2.
7. If eD(P1, Q1)N2 = eD(P ′

1, Q
′
1) then return F2 and the second components of

Φ((R1, OE2)) and Φ((OE1 , R2)) for R1 ∈ S1 and R2 ∈ S2.
8. Otherwise, return ⊥.

When D is smooth, P1, Q1 ∈ E1(Fp2), S1 ⊂ E1(Fp2), P2, Q2 ∈ E2(Fp2), and
S2 ⊂ E2(Fp2) the computational costs of KaniCod are O((#S1 + #S2) log D)
operations on Fp2 by using the methods stated in Sect. 2.2. Especially, D is a
power of 2 in our case.
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2.5 RandIsogImg

Here, we recall the algorithm RandIsogImg which evaluates the codomain of a
random isogeny of non-smooth degree and some point images under the isogeny.
This algorithm was proposed in the paper of QFESTA [26] and is an important
component of our SQIsign2D-East.

Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x. Let D be a
smooth integer satisfying E0[D] ⊂ E0(Fp2) and D ≈ p, and let d be an integer
coprime to D satisfying D − d ≈ p. RandIsogImg takes integers d,D satisfying
these conditions and a finite subset S of E0 as input, and outputs the codomain
of a random d-isogeny τ and the images of the points in S under τ .

In this algorithm, we first compute an endomorphism α ∈ End(E0) of degree
d · (D−d) using FullRepresentInteger and decompose it into α = ρ̂◦ τ , where
τ and ρ are the isogenies whose domains are E0 and whose degrees are d and
D − d, respectively. (See the following diagram.) Since deg τ + deg ρ = D and
gcd(deg τ,deg ρ) = 1, we can evaluate point images under the isogeny τ by using
KaniCod. We describe the pseudo code of RandIsogImg in Algorithm 1.

Algorithm 1. RandIsogImgO0
(d,D;S)

Input: Relatively prime Integers d, D such that D − d ≈ p and E0[D] ⊂ E0(Fp2) and
a finite subset S ⊂ E0.

Output: (EA, τ(S)) for a random d-isogeny τ : E0 → EA.
1: Let α ← FullRepresentIntegerO0

(d · (D − d)).
2: Take a basis P0, Q0 of E0[D].
3: (EA, τ(S), ∅) ← KaniCod(d, D − d, E0, E0, P0, Q0, α(P0), α(Q0); S; ∅).
4: return (EA, τ(S)).

In addition, we can compute the left O0-ideal Iτ = O0〈α, d〉, which corre-
sponds to the isogeny τ . We denote the algorithm which outputs (EA, τ(S), Iτ )
by RandIsogImgWithIdeal.
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2.6 SQIsignHD

SQIsignHD is a signature scheme proposed in [11] in 2023, which is based on
SQIsign and utilizes an attack on SIDH to achieve a smaller signature length than
SQIsign. There are two types of SQIsignHD, one using 4-dimensional isogenies
and the other using 8-dimensional isogenies for the verification. In this section,
we introduce an overview of SQIsignHD using 4-dimensional isogenies. For more
details, we refer to [11].

First, we show the system parameters of SQIsignHD. Let a, b be integers
satisfying 2a ≈ 3b ≈ 2λ, and let p be a prime satisfying p = 2a3bf − 1 for
a sufficiently small integer f . Let E0 be the elliptic curve over Fp2 defined as
E0 : y2 = x3 + x. Furthermore, we say that an odd integer q is 2a-good if there
exist integers m1,m2 satisfying m2

1 + m2
2 = 2a − q.

SQIsignHD is obtained by applying the Fiat-Shamir transform [18] on the
identification scheme based on the following diagram.

E0 E1

EA E2

τsk

ψ

com

φch

σ
resp

In the following, we describe the overview of SQIsignHD identification protocol,
which is similar to our protocol.

keygen: The prover generates a random 32b-isogeny τ : E0 → EA and publishes
the curve EA as the public key.

commit: The prover generates a random 32b-isogeny ψ : E0 → E1 and sends
E1 to the verifier as the commitment.

challenge: The verifier generates a random 3b-isogeny φ : E1 → E2 and sends
it to the prover.

response: The prover computes the ideal J corresponding to φ ◦ψ ◦ τ̂ and finds
a random equivalent ideal Iσ ∼ J whose norm q is 2a-good. Then, the prover
sends to the verifier an efficient representation of the q-isogeny σ : EA → E2

corresponding to Iσ.

verify: The verifier checks that the response send by the prover correctly rep-
resents a q-isogeny σ : EA → E2.

As an efficient representation of the q-isogeny σ, the prover sends (q, σ|EA[2a]).
Then, the verifier recovers the isogeny σ using Theorem 1. To apply Theorem 1,
the verifier needs to compute a (2a − q)-isogeny from EA. However, this task
is hard since the degree 2a − q is generally non-smooth. The verifier instead
computes the 2-dimensional endomorphism over EA × EA of degree 2a − q as
follows:
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1. Find two integers m1,m2 satisfying m2
1 + m2

2 + q = 2a.
2. Let ω be the 2-dimensional endomorphism of degree m2

1+m2
2 = 2a−q defined

as follows:

ω =
(

m1 −m2

m2 m1

)
.

Let I2 be the 2 × 2 identity matrix. Under the following diagram, the verifier
can recover σ by computing 4-dimensional 2a-isogeny. In this step, the verifier
uses an extension of Theorem 1 to higher dimension by Robert [28].

EA × EA
σI2 ��

ω

��

E2 × E2

ω′

��
EA × EA

σI2

�� E2 × E2.

3 Building Block for SQIsign2D-East

In this section, we give an algorithmic building block for SQIsign2D-East. We
assume that we have a prime p = 2a+bf − 1 with a ≈ b ≈ λ and f ∈ N as
small as possible. We use the same notation q := deg(σ) as in Subsect. 2.6. Note
that the degree q is approximately p1/2. In SQIsignHD, the verifier required a
4-dimensional isogeny computations since the auxiliary path ω of degree 2a − q
is a 2-dimensional isogeny. Our main idea is to generate the auxiliary path ω
as 1-dimensional isogeny of degree 2a − q by using RandIsogImg. However, the
original RandIsogImg can only compute an isogeny from a specific elliptic curve
E0. Since the auxiliary path we need is the isogeny from the public key EA, we
have to construct a generalized RandIsogImg.

3.1 Generalized RandIsogImg

We construct a generalized RandIsogImg so that we can compute an isogeny from
arbitrary curves. Let E be an elliptic curve isogenous to E0 and let O ∼= End(E).
Let τ be an Nτ -isogeny from E0 to E and let Iτ be a left O0-ideal corresponding
to τ . We propose an algorithm to compute an isogeny of non-smooth degree from
E.

In the procedure of RandIsogImgO0
(d,D;S), we use O0 only in step 1, where

we find α ∈ O0 satisfying n(α) = d · (D − d). Therefore, to construct a gener-
alized RandIsogImg, we have to find α ∈ O satisfying n(α) = d · (D − d). This
can be achieved by using EichlerModConstraint and StrongApproximation as
follows:

1. Using EichlerModConstraint(Iτ , 1, 1), obtain (C0 : D0) ∈ P
1(Z/NτZ) such

that C0j + D0k ∈ Z + Iτ = O0 ∩ O.
2. Using StrongApproximationd(D−d)(Nτ , C0,D0), we can find α ∈ O0 ∩ O

satisfying n(α) = d(D − d).
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The above approach is also used in the key generation and signing algorithm
of SQIsign [15]. Since we use StrongApproximation, the degree Nτ of τ must
be prime and d(D − d) > pN3

τ must hold. If we assume that D − d ≈ p as with
the original RandIsogImg, the requirement on the degree d will be d > N3

τ . In
addition, if we fix D around p, the condition D − d ≈ p holds for almost all d
satisfying d < D.

In the following, we show there is an additional hidden constraint on d. First,
StrongApproximationd(D−d)(Nτ , C0,D0) outputs μ ∈ O0 such that

n(μ) = d(D − d) and μ = m(C0j + D0k) + Nτμ1,

where m ∈ Z and μ1 ∈ O0. Therefore, the following equation holds:

d(D − d) = n(μ) ≡ m2p(C2
0 + D2

0) mod Nτ .

For such an integer m to exist, the following condition must be satisfied:
(

d(D − d)
Nτ

)
=

(
p(C2

0 + D2
0)

Nτ

)
,

where
( ·

·
)

is the quadratic residue symbol. On the other hand, from the definition
of EichlerModConstraint, there exists an integer m′ satisfying

m′ + C0j + D0k ∈ Iτ .

Hence, we have

n(m′ + C0j + D0k) = (m′)2 + p(C2
0 + D2

0) ≡ 0 mod Nτ ,

which means that (
p(C2

0 + D2
0)

Nτ

)
=

(−1
Nτ

)
.

Summarizing the above discussion, d must satisfy(
d(D − d)

Nτ

)
=

(−1
Nτ

)
. (2)

However, if we use the degree d satisfying this condition in our protocol, we face
a security issue. We explain this issue in Sect. 4.3. To avoid this security issue,
we instead require that 3 | d(D − d) and that 3 is not a square modulo Nτ , i.e.,
we require Nτ ≡ 5, 7 mod 12. Then, our two new conditions together allow us to
modify as follows:

– if d satisfies condition (2), then we call StrongApproximation with target
norm M = d(D − d);

– otherwise, we call StrongApproximation with target norm d(D − d)/3 to
obtain an endomorphism α′. In this case we have that d(D − d)/3 satisfies

(
d(D − d)/3

Nτ

)
=

(−1
Nτ

)
.
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After that, we compute a random degree 3 isogeny α′′ : E → E′′ using Vélu’s
formulas and we compose it with α′ to finally obtain an isogeny α of degree
d(D − d) from E to E′′.

From the above argument, a generalized RandIsogImg for E is as shown in
Algorithm 2.

Algorithm 2. GenRandIsogImgτ,Iτ
(d,D;S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ ,
relatively prime integers d, D such that 3 | d(D − d), N3 < d < D ≈ p, and
E[D] ⊆ E(Fp2), and a finite set S ⊆ E,

Output: (F ; ι(S)) for a random d-isogeny ι : E → F .
1: (C0 : D0) ← EichlerModConstraint(Iτ , 1, 1)
2: Let P, Q be a basis of E[D].

3: if d satisfies
(d(D−d)

Nτ

)
=

(−1
Nτ

)
then

4: α ← StrongApproximationd(D−d)(Nτ , C0, D0)
5: (F ; ι(S); ∅) ← KaniCod(d, D − d, E, E, P, Q, α(P ), α(Q); S; ∅)
6: else
7: α′ ← StrongApproximationd(D−d)/3(Nτ , C0, D0)

8: α′′ ← random 3-isogeny E → E′′, computed using Vlu’s formulas.
9: α ← α′′ ◦ α′

10: (F ; ι(S); ∅) ← KaniCod(d, D − d, E, E′′, P, Q, α(P ), α(Q); S; ∅)
11: end if
12: return (F ; ι(S))

3.2 Computing Auxiliary Path

Unfortunately, the requirement d > N3
τ is too strong to compute an auxiliary

path of degree r = 2a − q ≈ p1/2. To allow the use of smaller degree, we take the
following approach:

1. Let D1 be a smooth integer such that r(D1 − r) > N3
τ and r(D1 − r) < D.

2. Compute a r(D1 − r)-isogeny using GenRandIsogImg.
3. By computing a (D1,D1)-isogeny, obtain a r-isogeny.

Then, the lower bound of r decreases from N3
τ to approximately N3

τ /D1.

Remark 1. Strictly speaking, the lower bound of r is B=D1/2−√
(D1/2)2 − N3

τ

= (D1/2) ·(1−
√

1 − 4N3
τ /D2

1). Especially when D2
1 � N3

τ , we have B ≈ N3
τ /D1,

where we used
√

1 − ε ≈ 1 − ε/2 for ε � 1.
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Algorithm to compute an auxiliary path is given in Algorithm 3. Especially
in our protocol, we use D1 = 2a ≈ p1/2 and D = 2a+b ≈ p. Since the degree
r = 2a − q of the auxiliary path we need is around p1/2, we have r(D1 − r) ≈ p
for almost all r < D1. Hence, the condition r(D1 − r) > N3

τ is satisfied when
Nτ < p1/3.

Algorithm 3. AuxiliaryPathτ,Iτ
(r,D1,D;S)

Input: An isogeny τ : E0 → E of prime degree Nτ , its corresponding ideal Iτ , integers
r, D1, D such that gcd(r, D1D) = 1, N3

τ < r(D1 − r) < D ≈ p, 3 | d(D − d) for
d = r(D1 − r), and E[D] ⊂ E(Fp2), and a finite set S ⊂ E.

Output: (F ; ω(S)) for a random r-isogeny ω : E → F .
1: Let P, Q be a basis of E[D1].
2: (F ′; ι(P ), ι(Q)) ← GenRandIsogImgτ,Iτ

(r(D1 − r), D; P, Q).
3: (F ; ω(S); ∅) ← KaniCod(r, D1 − r, E, F ′, P, Q, ι(P ), ι(Q); S; ∅).
4: return (F ; ω(S)).

In the following, let M(q) := q(2a − q)(2a+b − q(2a − q)). From the above
argument, the requirements on the degree q are as follows:

q is odd integer smaller than 2a,

q(2a − q) < 2a+b,

3 | M(q).

Definition 1. We say that a positive integer q is ‘(2a, 2b)-nice’ if q is an odd
integer smaller than 2a and satisfying q(2a − q) < 2a+b. In addtion, we say that
a positive integer q is ‘(2a, 2b)3-nice’ if q is (2a, 2b)-nice and satisfies 3 | M(q).

Remark 2. The odd integer q < 2a is always (2a, 2b)-nice when a − b ≤ 2 from
the following inequality:

q · (2a − q) = 22a−2 − (2a−1 − q)2 < 22a−2 ≤ 2a+b.

Remark 3. From the following facts, the probability that 3 | M(q) is 2/3 or 1.

– if a ≡ b mod 2 then 3 | M(q),
– if a ≡ 0 mod 2 and b ≡ 1 mod 2 then 3 � M(q) if and only if q ≡ 2 mod 3,
– if a ≡ 1 mod 2 and b ≡ 0 mod 2 then 3 � M(q) if and only if q ≡ 1 mod 3.

4 New Signature Scheme: SQIsign2D-East

In this section, we describe our new signature scheme SQIsign2D-East. First,
we describe the detailed algorithm for SQIsign2D-East and then we propose its
variant named ‘CompactSQIsign2D-East’, which has smaller signature size than
the original SQIsign2D-East.
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4.1 Description of SQIsign2D-East

We first describe the identification protocol underlying SQIsign2D-East.
SQIsign-2D-East identification protocol is based on the following diagram.

E0 E1

EA E2

E3

τsk

ψ

com

φch

σ
resp

ωresp

We show the algorithms for the SQIsign2D-East identification scheme below.

Parameter Setting. The public parameter of SQIsign2D-East is taken as fol-
lows:

1. Let p be a prime of the form p = 2a+bf − 1, where f is a small integer and
a ≈ b ≈ λ.

2. Let E0 be the elliptic curve over Fp2 defined as E0 : y2 = x3 + x.
3. Let P0, Q0 be a basis of E0[2a+b].
4. Let O0 = Z〈1, i, i+j

2 , 1+k
2 〉, which is isomorphic to End(E0).

5. Let param = (p, a, b, E0, P0, Q0,O0).

Key Generation. As we stated in Subsect. 3.2, we have to take the degree Nτ

of the secret isogeny τ smaller than p1/3. Fortunately, we can take Nτ as small
as approximately p1/4 while achieving λ-bits security as follows:

1. Take a random prime Nτ < p1/4 such that
(

3
Nτ

)
= −1.

2. Compute a random Nτ -isogeny τ : E0 → E.

The method to use a random degree smaller than p1/4 is also used in the key
generation of SQIsign [13].

Since Nτ is a large prime, we cannot compute τ efficiently from
ker τ using Vélu’s formulas. Instead, we compute an efficient representation
(Nτ , τ(P0), τ(Q0)) of τ using RandIsogImg. By using (Nτ , τ(P0), τ(Q0)), we can
efficiently compute τ(T0) for any T0 ∈ E0[2a+b] as follows:

1. Find s, t ∈ Z/2a+b
Z such that T0 = sP0 + tQ0.

2. Return τ(T0) = sτ(P0) + tτ(Q0).
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Now we show the key generation algorithm in Algorithm 4.

Algorithm 4. keygen(param) → (pk, sk)
Input: Public parameter param = (p, a, b, E0, P0, Q0, O0).
Output: Public key pk and secret key sk.
1: Take a random prime Nτ < p1/4.
2: (EA, RA, SA, Iτ ) ← RandIsogImgWithIdealO0

(Nτ , 2a+b; P0, Q0).
3: return pk = EA, sk = (τ = (Nτ , RA, SA), Iτ ).

Commitment. The commitment phase is similar to the key-generation. How-
ever, the commitment degree Nψ need not to be prime smaller than p1/4 unlike
Nτ . Hence, we just chose a raodom odd integer Nψ smaller than 2a+b.

As with the key generation, we compute (Nψ, ψ(P0), ψ(Q0)) as an efficient
representation of ψ using RandIsogImg. As described above, we can efficiently
evaluate ψ over the 2a+b-torsion subgroup using this representation. In addition,
we can compute ψ̂(T1) for any T1 ∈ E1[2a+b], where E1 is the codomain of ψ as
follows:

1. Find s, t ∈ Z/2a+b
Z such that T1 = sψ(P0) + tψ(Q0).

2. Return ψ̂(TA) = sNψP0 + tNψQ0.

Now, we show the commitment algorithm in Algorithm 5.

Algorithm 5. commit(param) → (com, s)
Input: Public parameter param.
Output: Commitment com and secret information s.
1: Take a random odd integer Nψ < 2a+b.
2: (E1, R1, S1, Iψ) ← RandIsogImgWithIdealO0

(Nψ, 2a+b; P0, Q0).
3: return com = E1, s = (ψ = (Nψ, R1, S1), Iψ).

Challenge. We just compute a random 2b-isogeny from E1 using Vélu’s formu-
las. We show the challenge algorithm in Algorithm 6.

Response. In the response phase, we first compute the ideal Iφ. This can be
done by using IsogToIdeal algorithm [11, Algorithm 10], which takes two iso-
genies ψ : E0 → E1 and φ : E1 → E2 and the ideal Iψ corresponding to ψ as
input and return the ideal Iφ corresponding to φ. Then, we compute the ideal J
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corresponding to φ ◦ ψ ◦ τ̂ . Next, we find all α ∈ J such that q := n(α)/n(J) is
(2a, 2b)3-nice by lattice enumeration (e.g., see [8, Algorithm 2.7.5]) and choose
one of them uniformly. Then, we let Iσ = J ᾱ

n(J) and compute an efficient repre-
sentation of the q-isogeny σ : EA → E2 corresponding to Iσ. Finally, we generate
an auxiliary path ω : EA → E3 and return an efficient representation of σ ◦ ω̂.

Algorithm 6. challenge(pk,param) → ch

Input: Public key pk and public parameter param.
Output: Challenge ch.
1: Take a random integer u ∈U Z/2b

Z and a bit bin ∈U {0, 1}.
2: Let P ′

1, Q
′
1 be the canonical basis of E1[2

b].
3: If bin = 0, K′

1 ← P ′
1 + uQ′

1, otherwise, K′
1 ← uP ′

1 + Q′
1.

4: return ch = K′
1, a generator of the kernel of φ : E1 → E2.

If there is no ideal Iσ whose norm q is (2a, 2b)3-nice, we need to go back to the
commitment phase. In the following, we discuss how to avoid this. From now on,
we assume that a − b ≤ 2, which means that at least 2/3 of odd integers smaller
than 2a are (2a, 2b)3-nice (see Remark 2 and Remark 3). To avoid the failure
in finding Iσ, we consider using q′ = q/ gcd(q, f) instead of q. This reduces the
constraint of q from q < 2a to q′ < 2a ⇔ q < gcd(q, f) · 2a.

Definition 2. We say that a positive integer q is ‘(2a, 2b, f)-nice’ when q′ =
q/ gcd(q, f) is (2a, 2b)-nice. Similarly, we say that q is ‘(2a, 2b, f)3-nice’ when
q′ = q/ gcd(q, f) is (2a, 2b)3-nice.

Let σ be a q-isogeny computed in the response phase. Assume that q is
(2a, 2b, f)3-nice and let g = gcd(q, f), q′ = q/g, and r = 2a − q′. We formally
decompose the q-isogeny σ to a g-isogeny σg : EA → E′

A and a q′-isogeny
σ′ : E′

A → E2 and take the following procedures:

1. Compute kerσg by evaluating σ over EA[g].
2. Compute σg : EA → Em by using Vélu’s formulas.
3. Obtain an r-isogeny ω : EA → E3 by using AuxiliaryPath.
4. Let σ′

g = [ω]∗σg and compute kerσ′
g = ω(ker σg).

5. Compute σ′
g : E3 → E4 by using Vélu’s formulas.

6. Evaluate σ′ and ω′ over Em[2a] by using the relationships: σ′ ◦ σg = σ and
ω′ ◦ σg = σ′

g ◦ ω.
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E0

τ

��

ψ
�� E1

φ

��
EA

ω

��

σg ��

σ

��
Em

ω′

��

σ′
�� E2

E3

σ′
g �� E4,

Note that there is a concern that deg σg = g is not coprime to deg ω = r. This
means that the degree of ω′ may not be equal to r but reduces to r̃ = r/h for a
factor h of gcd(g, r). In this case, we additionally compute a random h-isogeny ι
from E4 and use ι ◦ ω′ as an auxiliary path. For simplicity, we consider the case
h = 1 in the following.

The response algorithm is given in Algorithm 7. To compute R′
2, S

′
2 in step

5, we use the following equation:

σ ◦ [2b] =
1

NτNψ
φ ◦ ψ ◦ τ̂ ◦ α̂,

which is obtained by applying the Deuring correspondence on the equation Iσ =
ĪτIψIφ · ᾱ

Nτ Nψ2b . Then, we can compute R′
2 as follow:

R′
2 =

1
NψNτ

φ ◦ τ ◦ ψ̂ ◦ α̂(PA) = σ(2bPA) = σ(P ′
A).

We can compute S′
2 similarly.

In step 6, we compute R′
3 = ω(P ′

A) and S′
3 = ω(Q′

A) for an r-isogeny ω :
EA → E3. Since K ′

g = 2a(R′
3 + �S′

3) = ω(Kg) holds, we have σ′
g = [ω]∗σg.

Therefore, the following equation holds:

R′
4 = σ′

g(gR′
3) = σ′

g ◦ ω(gP ′
A) = ω′ ◦ σg(gP ′

A) = ω′(R′
m),

where ω′ = [σg]∗ω. Similarly, S′
4 = ω′(S′

m) also holds.
From the equation (P ′

4, Q
′
4) = (R′

4, S
′
4)M = (ω′(R′

m), ω′(S′
m))M in step 11,

the following equation holds:

(ω̂′(P ′
4), ω̂′(Q′

4)) = r(R′
m, S′

m)M = −q(R′
m, S′

m)M,
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Algorithm 7. response(sk, s, ch,param) → resp

Input: Secret key sk, secret information s, challenge ch, and public parameter param.
Output: Response resp.
1: Let Iφ ← IsogToIdeal(φ, ψ, Iψ).
2: Let J = ĪτIψIφ.
3: Find all α ∈ J such that q := n(α)/n(J) is (2a, 2b, f)3-nice by lattice enumeration

and choose one of them uniformly.
4: Let Iσ = J ᾱ

n(J)
.

5: Let q = n(Iσ), g = gcd(q, f), q′ = q/g and r = 2a − q′.
6: Let PA, QA be the canonical basis of EA[2a+bg] and let (P ′

A, Q′
A) = 2b(PA, QA).

7: Compute R′
2 = σ(P ′

A) and S′
A = σ(Q′

A).
8: Let (E3, R

′
3, S

′
3) ← AuxiliaryPathIτ

(r, 2a, 2a+b; P ′
A, Q′

A).
9: Find an integer 	 such that 2a(R′

2 + 	S′
2) = O (or 2a(	R′

2 + S′
2) = O) and let

Kg = 2a(P ′
A + 	Q′

A) (or Kg = 2a(	P ′
A + Q′

A)).
10: Compute σg : EA → Em = EA/〈Kg〉, R′

m = σg(gP ′
A), S′

m = σg(gQ′
A).

11: Let K′
g = 2a(R′

3 + 	S′
3) (or Kg = 2a(	P ′

A + Q′
A)).

12: Compute σ′
g : E3 → E4 = EA/〈K′

g〉, R′
4 = σ′

g(gR′
3), S

′
4 = σ′

g(gS′
3).

13: Let P ′
4, Q

′
4 be the canonical basis of E4[2

a] and compute the change of basis matrix
M such that (P ′

4, Q
′
4) = (R′

4, S
′
4)M .

14: Compute (U2, V2) = −g(R′
2, S

′
2)M .

15: return resp = (Kg, E4, U2, V2).

where we used r = 2a−q′ ≡ −q′ mod 2a. By taking the image under the isogeny
σ′ of both sides, we obtain

(σ′ ◦ ω̂′(P ′
4), σ

′ ◦ ω̂′(Q′
4)) = −q(σ′(R′

m), σ′(S′
m))M

= −q(σ′ ◦ σg(gP ′
A), σ′ ◦ σg(gQ′

A))M
= −qg(σ(P ′

A), σ(Q′
A))M

= −qg(R′
2, S

′
2)M = q(U2, V2).

Therefore, we obtain the following equation:

(U2, V2) =
(

1
q
σ′ ◦ ω̂′(P ′

4),
1
q
σ′ ◦ ω̂′(Q′

4)
)

. (3)

Verify. We show the verification algorithm in Algorithm 8. We prove that
SQIsign2D-East identification protocol is complete. Assume here that the prover
computes the response honestly. From Eq. 3, the subgroup K of EA ×F satisfies
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Algorithm 8. verify(pk, com, ch, resp,param) → accept/reject
Input: Public key pk, commitment com, challenge ch, response resp, and public

parameter param.
Output: accept or reject.
1: Compute σg : EA → Em = EA/〈Kg〉.
2: Let P ′

4, Q
′
4 be the canonical basis of E3[2

a].
3: Compute a (2a, 2a)-isogeny Φ : E4 ×E2 → A with kernel K = 〈(P ′

3, U2), (Q
′
3, V2)〉.

4: if A ∼= Em × F for an elliptic curve F then
5: return accept.
6: else
7: return reject.
8: end if

the following equation:

K = 〈(P ′
4, U2), (Q′

4, V2)〉

=
〈(

P ′
4,

1
q
σ′ ◦ ω̂′(P ′

4)
)

,

(
Q′

4,
1
q
σ′ ◦ ω̂′(Q′

4)
)〉

= 〈(qP ′
4, σ

′ ◦ ω̂′(P ′
4)), (qQ

′
4, σ

′ ◦ ω̂′(Q34))〉.
Let σ′′ = [ω′]∗σ′, ω′′ = [σ′]∗ω′, and F be the codomain of σ′′ and ω′′. From
Theorem 1, a (2a, 2a)-isogeny Φ with kernel K has the following form:

Φ =
(

ω̂′ −σ̂′
σ′′ ω′′

)
: E4 × E2 → Em × F

up to isomorphism. Therefore, the verifier accepts the honest response.

4.2 Reducing Signature Size

Applying the Fiat-Shamir transform, the signature of our protocol is made of
the data (E1,Kg, E4, U2, V2), where E1 is the commitment elliptic curve, E4 is
the codomain of the auxiliary path, Kg ∈ EA[g], and U2, V2 ∈ E2[2a]. E1 and
E4 can be determined by their j-invariant j(E1), j(E4) ∈ Fp2 . Therefore, storing
E1 and E4 takes 2 log2 p2 ≈ 8λ bits. The points U2 and V2 can be compressed
as in SIKE. Using this compression, U2 and V2 requires 3a ≈ 3λ bits. Similarly,
the point Kg can be compressed and it requires about log2 gλ bits. Totally, the
signature size is 11λ bits.

Actually, we can reduce the signature size by about 2λ bits by using the same
method as SQIsign: include the information about φ̂ instead of the commitment
E1 in the signature. We name this variant ’CompactSQIsign2D-East’. To apply
this method, we compute ω′′ = [σ′]∗ω′ using KaniCod. Now we explain how
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CompactSQIsign2D-East works. Let H : {0, 1}∗ × Fp2 → Z/2b
Z × {0, 1} be a

cryptographic hash function and let GenKer be an algorithm defined as follows:

GenKer(m,E1) → K ′
1:

1. h,bin ← H(m, j(E1)).
2. Let P ′

1, Q
′
1 be the canonical basis of E1[2b].

3. If bin = 0, return K ′
1 = hP ′

1 + Q′
1.

4. Otherwise, return K ′
1 = P ′

1 + hQ′
1.

In the following, we regard Fp2 as a totally ordered set under an appropriate order
relation. We show the explicit algorithms for CompactSQIsign2D-East in Algo-
rithm 9 and 10. Note that the key generation algorithm for CompactSQIsign2D-
East is same as Algorithm 4.

Algorithm 9. CompactSign(pk, sk,m,param) → sig

Input: The public key pk, the secret key sk, the message m, and the public parameter
param.

Output: The signature sig.
1: (E1, Nψ, R1, S1, Iψ) ←, (param).
2: Let K1 ← GenKer(m, E1) and φ : E1 → E2.
3: Let K2 be a generator of ker φ̂.
4: Find a 2b-torsion point P ′

2 linearly independent with K2 deterministically.
5: Find t ∈ Z/2b

Z satisfying K1 = tφ̂(P ′
2).

6: Compute P ′
4, Q

′
4, R′

m, S′
m, and resp = (Kg, E4, U2, V2) using Algorithm 7.

7: (F ; ∅; U, V ) ← KaniCod(q′, r, E4, E2, P
′
4, Q

′
4, qU2, qV2; ∅; R′

m, S′
m).

8: Let M and MF be the Montgomery coefficient of Em and F , respectively.
9: if M ≤ MF then

10: bin ← 0.
11: else
12: bin ← 1.
13: end if
14: return sig = (Kg, F, U, V, K2, t, bin).

Since the point K2 ∈ E2[2b] can be represented by a single Z/2b
Z element,

the size of (K2, t) is about 2b bits. Therefore, the total signature size is about
log2 p2 + 3a + 2b ≈ 9λ bits.

4.3 Security Issue

We discuss the security issue when we use only (2a, 2b)-nice degrees q satisfying
Eq. (2) for d = q(2a − q) and D = 2a+b.

As a first step, we observe that an adversary can evaluate σ at any input;
the degree q can be then recovered using a pairing computation combined with
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Algorithm 10. CompactVerify(pk,m, sig,param) → accept/reject
Input: The public key pk, the message m, the signature sig, and the public parameter

param.
Output: accept or reject.
1: Let PA, QA be the canonical basis of EA[2a+bg].
2: Compute σg : EA → Em = EA/〈Kg〉, R′

m = σg(2bgPA), S′
m = σg(2bgQA).

3: Compute a (2a, 2a)-isogeny Φ : Em × f → A with kernel 〈(R′
m, U), (S′

m, V )〉.
4: if not A ∼= F0 × F1 for elliptic curves F0 and F1 then
5: return reject.
6: end if
7: Let M0 and M1 be the Montgomery coefficient of F0 and F1, respectively.
8: if M0 > M1 then
9: F0, F1 ← F1, F0.

10: end if
11: E2 ← Fbin2 .
12: Find a 2b-torsion point P ′

2 linearly independent with K2 deterministically.
13: Compute a 2a-isogeny φ̂ : E2 → E1 = E2/〈K2〉 and L1 = φ̂(P ′

2).
14: Let K1 ← GenKer(m, E1).
15: if K1 = tL′

1 then
16: return accept.
17: else
18: return reject.
19: end if

an easy discrete log computation. Therefore it can be assumed that q is known. It
is important to note that q varies with every signature and is essentially random
subject to the above condition. Hence for each signature the adversary learns
that M(q) has the same quadratic residuosity as −1 mod Nτ . From Dirichlet’s
theorem on arithmetic progressions it follows that, as soon as M(q) is not an
exact square, the density of primes Nτ satisfying (2) is 50%. Thus, heuristically,
we expect that Nτ is uniquely determined by about λ/2 values of q. This means
that after seeing roughly λ/2 signatures we should be able to find Nτ by simply
brute-forcing over all primes in (0, p1/4) and testing whether (2) holds for each of
the corresponding values of q. Ignoring polynomial overhead, this step therefore
has a complexity of O(2λ/2).

Given the norm Nτ of the secret ideal Iτ , we can recover Iτ by enumerating
all left O0-ideals of norm Nτ and check whether the corresponding isogenies have
codomain isomorphic to EA. There will be O(2λ/2) such ideals and they can be
enumerated using the bijection from [22, Lemma 7.2]. Therefore, the cost of this
step is Õ(2λ/2).



SQIsign2D-East 293

4.4 On Sampling a Response Ideal

Lemma 1. Let f ∈ Z>0. As x → ∞, the proportion of integers q ∈ (x, fx)
satisfying q < gcd(q, f)x converges to

P (f) − f

f(f − 1)
,

where P (f) denotes the gcd-sum function (also known as Pillai’s arithmetical
function):

P (f) =
f−1∑
k=0

gcd(k, f) =
∑
d|f

dϕ(f/d).

Proof. For any k = 0, . . . , f − 1, the number of integers q ∈ (x, fx) such that

q mod f = k and q < gcd(q, f)x

is asymptotic to
1
f

· gcd(k, f) − 1
f − 1

,

so the lemma follows by summing over all congruence classes mod f .

For a detailed study of the gcd-sum function, we refer to [31]. It is a mul-
tiplicative function which at prime powers f = �e takes the values P (�e) =
(e + 1)�e − e�e−1. On “average”, it can be shown that

P (f) ≈ 3f log f

π2
,

although its concrete values fluctuate largely with f .

Heuristic. Let J be a left ideal of OA and assume that 0 ≤ a − b ≤ 2. If

δπ22a−bP (f) > f

where

δ =
{

1 if a ≡ b mod 2,
2/3 if not

(see Remark 3), then on average we expect there to exist at least one left ideal
Iσ ∼ J such that q := n(Iσ) is odd, M(q) is divisible by 3, q < gcd(q, f)2a and
q(2a − q) < 2a+b. More quantitatively, the probability that no such ideal exists
can be estimated as (

1 − δ
P (f)
2f2

)2π2f2a−b

.

(
1 − δ

P (f) − f

3f(f − 1)

)2π2f2a−b

.
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Explanation. First note that the assumption 0 ≤ a−b ≤ 2 implies that q(2a−q) <
2a+b as soon as q is odd, so the last condition is of no concern. The Gaussian
heuristic says that in any sufficiently general lattice Λ ⊂ R

4, we expect

#{α ∈ Λ | ‖α‖ < R } ≈
π2

2 R4

Vol(Λ)
,

where the numerator on the right is just the volume of a ball in R
4 with radius

R. Applying this heuristic to Λ = J , which has Euclidean covolume n(J)2p/4,
and to R =

√
f2an(J), we find an expected number of

2π2f222a

p
≈ 2π2f2a−b

elements α ∈ J whose quaternion norm is smaller than f2an(J). Assuming
OR(J)× = {±1}, from [14, Lemma 1] it follows that there should be about
π2f2a−b left ideals Iσ ⊂ OA satisfying Iσ ∼ J and n(Iσ) < f2a.

If we furthermore assume that the norms of these Iσ’s behave as independent
uniform variables in (0, f2a) ∩ Z, then we expect a proportion of 1/2 to be odd,
a proportion of δ to satisfy 3 | M(q), and a proportion of P (f)/f2 to meet the
bound q < gcd(q, f)2a, leading to

δ
π22a−bP (f)

f

ideals whose norm q is of the desired type.

Remark 4. The count is slightly off in case f is even, because the condition
q < gcd(q, f)2a is not independent of the condition that q is odd. A similar
remark applies in case δ = 2/3 and 3 | f . For simplicity, we ignore this issue
here, although it is taken into account in the failure rates listed in Table 1.

A similar reasoning shows the failure rate of the signing procedure (i.e., the
probability of having to go back to the commitment phase): this is

(
1 − δ

P (f)
2f2

)2π2f2a−b

. (4)

For the concrete parameter sets shown in Sect. 6.1, this gives (Fig. 1):

5 Security Analysis

We now discuss the security of our SQIsign2D-East.
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Fig. 1. Heuristical rates of failure to find an equivalent ideal of the desired norm type.
For NIST level 3 this is formula (4). For the other NIST levels the formula was tweaked
so as to take into account Remark 4.

5.1 On the Distribution of Auxiliary Paths

Let τ : E0 → EA be an Nτ -isogeny and Iτ be the left O0-ideal corresponding to
τ . Given the right order OA of Iτ , we use SIτ ,M to denote the distribution on

OM := {α ∈ O0 ∩ OA | n(α) = M}

that are outputs of the algorithm consisting of first getting (C0 : D0) ∈
P
1(Z/NτZ) by running EichlerModConstraint(Iτ , 1, 1), then getting α ∈ O0 ∩

OA with norm M by running StrongApproximationM (Nτ , C0,D0).
For a fixed q, we define

Iso(EA, q) := {ϕ : EA → � such that deg ϕ = 2a − q},

and we consider the following distributions on Iso(EA, q):

DU : The uniform distribution UIso(EA,q).
D1: For q such that d = q(2a − q) satisfies Eq. (2): a factor of θα of degree 2a − q

where α ∼ SIτ ,M(q) and θα ∈ End(EA) is the corresponding endomorphism.
D2: For q such that d = q(2a − q) does not satisfy Eq. (2): a factor of θα ◦ θ′′

of degree 2a − q where α ∼ SIτ ,M(q)/3, θα ∈ End(EA) is the corresponding
endomorphism and θ′′ is a random isogeny of degree 3 with domain EA.

DAP : DAP = D1 if d = q(2a − q) satisfies Eq. (2), and DAP = D2 otherwise.
Note that this is the same distribution as the outputs of Algorithm 3 with
d = q,D1 = 2a and D = 2a+b.

Finally, we define a distribution Q on Z, which is the distribution of reduced
norm of the response ideals Iσ.

Problem 1. Let a be a fixed integer as in the parameter choices and EA be the
public curve. Let S = {ω : EA → � of degree 2a − q} be a set of size M > log Nτ

where either

1. S is sampled by first sampling q ∼ Q, then sampling ω from DU ;
2. S is sampled by first sampling q ∼ Q, then sampling ω from DAP .

The problem is, given EA, a, S, to distinguish between the two cases with a
polynomial number of queries to Q, FIDIO and to DAP .
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Remark 5. It seems that the most natural way to distinguish the two cases in
Problem 1 is to reverse engineer the algorithm that underlies the distribution
DAP . That means, given an isogeny EA → F of degree 2a − q, one tries to
complete the diagrams in Figs. 2 and 3. In the first case, it means to come up
with an isogeny from F to EA of degree q(2a+b −q(2a −q)). This gives rise to an
endomorphism on EA, then one recovers the quaternion element corresponding
to this endomorphism and check whether the quaternion element is sampled
from SIτ ,M(q). The second case is similar, except that one finds an isogeny from
F to some curve E′′ that is away from EA by a degree 3 isogeny. This process,
requires at least the knowledge of both the endomorphism rings of EA and F .
Therefore, it seems reasonable to assume that an algorithm to solve Problem 1
requires at least O(2λ) time complexity.

Fig. 2. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (2) holds for d = q(2a − q) and D = 2a+b.

Fig. 3. A diagram that illustrates the computation of the auxiliary path from EA in
the case when Eq. (2) does not hold.

5.2 Soundness of SQIsign2D-East

The proof of soundness of our protocol is quite similar to that of SQIsignHD.
Let (E1, φ,Kg, E4, U2, V2) and (E1, φ

′,K ′
g, E

′
4, U

′
2, V

′
2) are two SQIsign2D-East

transcripts with the same commitment E1 but different challenges φ �= φ′. From
(Kg, E4, U2, V2) and (K ′

g, E
′
4, U

′
2, V

′
2), we can compute efficient representations

of σ : EA → E2 and σ′ : EA → E′
2, where E2 and E′

2 are codomains of φ and φ′,
respectively.

Therefore, we obtain an efficient representation of α = σ̂′ ◦ φ′ ◦ φ̂ ◦ σ ∈
End(EA). Finally, the proof that α is non-scalar is exactly same as SQIsignHD
since it depends only on the fact that q = deg(σ) and q′ = deg(σ′) are coprime
to deg(φ) = deg(φ′).
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5.3 Zero-Knowledge of SQIsign2D-East

We now conclude this section with a proof of the zero-knowledge property of our
SQIsign2D-East.

Definition 3. Given parameters f and a, a random uniform nice degree isogeny
oracle (Rundio) is an oracle taking as input a supersingular elliptic curve E
defined over Fp2 and returning an efficient representation of a random isogeny
σ : E → E′ of (2a, 2b, f)3-nice degree prime such that:

(i) The distribution of E′ is uniform in the supersingular isogeny graph.
(ii) The conditional distribution of σ given E′ is uniform among isogenies E →

E′ of (2a, 2b, f)3-nice degree.

The existence of RUNDIO is based on the Heuristic assumption Sect. 4.4
applied to our choices of parameter sets.

Definition 4. A fixed degree isogeny oracle (Fidio) is an oracle taking as input
a supersingular elliptic curve E defined over Fp2 and an integer N , and outputs a
uniformly random isogeny ϕ : E → E′ (in efficient representation) with domain
E and degree N .

Theorem 2. Assuming that the commitment curve E1 is both computationally
indistinguishable from an elliptic curve chosen uniformly at random in the super-
singular isogeny graph, and the hardness of Problem 1. Then the SQIsign2D-East
identification protocol is computationally honest-verifier zero-knowledge in the
RUNDIO and FIDIO model.

In other words, there exists a polynomial time simulator S with access to a
RUNDIO and a FIDIO that produces random transcripts which are computa-
tionally indistinguishable from honest transcripts.

Proof. A transcript of SQIsign2D-East consists of (E1, φ,Kg, E4, U2, V2), where
E1 is a commitment, φ is a challenge, (Kg, E4, U2, V2) can be uniquely computed
from a q-isogeny σ and a (2a − q)-isogeny ω. (See Algorithm 7 for detail.) The
simulator proceeds as follows:

1. Call the RUNDIO on input EA to get an isogeny σ′ : EA → E′
2 of (2a, 2b, f)3-

nice degree q.
2. Generate an isogeny φ̂′ : E′

2 → E′
1 of degree 2b uniformly at random.

3. Call the FIDIO on input (EA, 2a − q), resulting in the isogeny ω′ : EA → E′
3.

4. Compute (K ′
g, E

′
4, U

′
2, V

′
2) from (σ′, ω′).

Then the procedure above gives rise to a simulated transcript as (E′
1, φ

′,K ′
g, E

′
4,

U ′
2, V

′
2).

Let (E1, φ,Kg, E4, U2, V2) be a real transcript where (Kg, E4, U2, V2) is com-
puted from the response isogeny σ : EA → E2 of degree q and the auxiliary path
ω : EA → E3 of degree 2a − q. From the properties of the RUNDIO and FIDIO
and the assumptions we made in the theorem, we can see that:
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1. By the definition of the RUNDIO, E′
2 is uniformly random in the super-

singular isogeny graph. Since φ̂′ is a uniformly random isogeny from E′
2 of

degree 2b, its codomain curve E′
1 is also uniformly random in the graph. By

assumption, E1 and E′
1 are computationally indistinguishable.

2. φ and φ′ follow the same distribution as they are generated the same way.
3. Conditional to E′

2, σ′ is uniformly random among isogenies between EA and
E′

2 of (2a, 2b)3-nice degree by the definition of RUNDIO. Conditional to E2,
σ has the same distribution by construction.

4. Assuming the hardness of Problem 1, conditional to q, ω is computationally
indistinguishable from a random isogeny of degree 2a − q from EA.

5. Item 3,4 combined shows that (Kg, E4, U2, V2) is computationally indistin-
guishable from (K ′

g, E
′
4, U

′
2, V

′
2) as the distributions of (σ, ω) and (σ′, ω′) are

computationally indistinguishable. ��
Remark 6. The assumption on the distribution of the commitment curve E1

made in Theorem 2 is about analyzing the distribution of the outputs of the
algorithm RandIsogImg given the input norm size. This has been discussed in
great detail in [26] where this algorithm was first introduced. Based on the
discussions there, we believe this assumption is reasonable.

The Previous Attack Strategy Does Not Apply. To run the attack as in Sect. 4.3
on SQIsign2D-East, we need to able to solve the following problem:

Problem 2. Let ω : EA → � of degree 2a − q where either

1. ω is sampled from D1,
2. ω is sampled from D2.

The problem is, given EA, ω, to distinguish with success rate 1 between the two
cases with a polynomial number of queries to DAP .

We prove in Proposition 1 that Problem 2 is no easier than Problem 1 assum-
ing that the best algorithm to solve Problem 1 has complexity O(2λ′

) where
λ′ ≥ λ. This seems a reasonable assumption as discussed in Remark 5, and
a necessary condition to have our protocol achieve λ-bits security. Proposition
1 then implies that our assumption on the hardness of Problem 1 ensures the
hardness of Problem 2, therefore we do not need to make an extra assumption
on Problem 2. This agrees with our intuition that if Problem 2 were easy, then
our SQIsign2D-East would not be zero-knowledge.

Proposition 1. If solving Problem 1 requires O(2λ′
) time complexity with λ′ ≥

λ, then solving Problem 2 requires at least O(2λ′
) time complexity.

Proof. We prove by contradiction. Suppose there is an algorithm A that solves
Problem 2 in O(2λ′′

) where λ′′ < λ. Now in Problem 1, we are given with M
samples with M > log Nτ such that they are either from DU or DAP . We run
the distinguishing algorithm A on around log Nτ ≈ λ/2 number of samples to
get enough Legendre symbol values with respect to Nτ to uniquely determine
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Nτ . These values allows us to recover Nτ in time O(2λ/2). Given the value of Nτ ,
then we check whether the remaining M − log Nτ samples gives rise to correct
Legendre symbols values. In the case when the M samples are from DU , this
fails with a non-negligible probability; and in the case when M samples are from
DAP , this always succeeds. This leads to an algorithm that solves Problem 1 in
time Õ(2λ′′

+ 2λ/2) which is less than O(2λ′
), a contradiction. ��

Remark 7. Although the additional 3-isogeny computation will probably be very
fast if compared to the rest of the response step, it still introduces a conditional
step that is performed only when q fails to satisfy some Legendre symbol con-
dition with respect to Nτ . This creates a side channel that may be exploited
leading to a restoration of the original attack. We leave this solution as a future
work.

6 Efficiency

In this section, we analyse the efficiency of SQIsign2D-East and CompactSQI
sign-2D-East. First, we provide concrete parameters for these protocols, then
compare the data sizes of these protocols such as public key size and ciphertext
size with SQIsign and SQIsignHD. Finally, we analyse the computational cost
of SQIsign2D-East and CompactSQIsign2D-East.

6.1 Parameters

In the following, we give concrete parameters for SQIsign2D-East and Compact-
SQIsign2D-East satisfying the NIST security level 1, 3, and 5.

NIST level a b f p

1 127 126 27 2253 · 27 − 1

3 191 189 35 2380 · 35 − 1

5 254 253 153 2507 · 153 − 1

Remark 8. To fit primes into 64-bit limbs, it preferable to use smaller primes
such as: p = 2248 · 5 − 1, p = 2376 · 65 − 1, and p = 2500 · 27 − 1 used in
SQIsign2D-West [2]. However, if we choose such primes, the challenge length b
becomes quite smaller than λ. (e.g. b = 123 < 128 for Level 1.) Therefore, we
need to extend the challenge length in some way. For example, if there exists a
smooth integer c | (p−1), we can extend the challenge degree from 2b to 2b ·c by
using an additional c-isogeny. This change requires to evaluate points of order
c under ψ, which is computed by a 2-dimensional isogeny. In the gluing step of
the theta algorithm by [12], we need to compute the x-coordinate of the sum of
an evaluated point and a point of order 4. This requires the arithmetic on Fp4 .
We leave the efficient computation to future work.
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6.2 Data Sizes

In this subsection, we compare the signature sizes of SQIsign, SQIsignHD,
SQIsign- 2D-East, and CompactSQIsign2D-East using the above parameters.
Table 1 shows each signature size. Note that we do not give the signature size
of SQIsignHD for the level 3 and 5 since sufficient information to evaluate the
signature sizes are not given in [11].

Table 1. Signature size comparison

Security Protocol Signature (bytes)

Level 1 SQIsign 177

SQIsignHD 109

SQIsign2D-East 182

CompactSQIsign2D-East 150

Level 3 SQIsign 263

SQIsignHD –

SQIsign2D-East 271

CompactSQIsign2D-East 223

Level 5 SQIsign 335

SQIsignHD –

SQIsign2D-East 359

CompactSQIsign2D-East 295

As shown in Table 1, the signature size of SQIsign2D-East is larger than
both SQIsign and SQIsignHD for every security level. On the other hand, the
signature size of CompactSQIsign2D-East is smaller than SQIsign and larger
than SQIsignHD for every security level.

6.3 Computational Cost

We compare the computational costs of SQIsignHD, SQIsign2D-East, and Com-
pactSQIsign2D-East for the security level 1. Table 2 shows the number of isogeny
computations of each degree. As Table 2 shows, our protocol does not require
any 4-dimensional isogeny computation for the verification. In addition, the
number of 2-dimensional isogeny computations is smaller than the number of
4-dimensional isogeny computations in SQIsignHD. Therefore, the verification
cost of our protocol is clearly smaller than that of SQIsignHD. As for the key
generation and signing, our protocol requires 2-dimensional isogeny computa-
tions, whereas SQIsignHD only requires 1-dimensional isogeny computations.
Therefore, our protocol is likely to have a larger cost for the key generation and
signing.

Finally, in Table 3, we show the actual computational times of SQIsign2D-
East and CompactSQIsign2D-East implemented in Julia. The implementation is
available as supplementary materials. These are the averages of 100 run times.



SQIsign2D-East 301

Table 2. Number of isogeny computations of each degree

Protocol (Security level 1) 2 3 (2, 2) (2, 2, 2, 2)

SQIsignHD keygen 378 234 – –

sign 252 312 – –

verify – 78 – 142

SQIsign2D-East keygen – – 253 –

sign 126 0–4 633 –

verify 126 0–4 127 –

CompactSQIsign2D-East keygen – – 253 –

sign 126 0–4 760 –

verify 126 0–4 127 –

Table 3. Computational times (sec.)

Security Protocol keygen sign verify

Level 1 SQIsign2D-East 0.50 1.50 0.24

CompactSQIsign2D-East 0.52 1.87 0.32

Level 3 SQIsign2D-East 1.02 2.91 0.51

CompactSQIsign2D-East 1.03 3.21 0.56

Level 5 SQIsign2D-East 1.52 4.21 0.72

CompactSQIsign2D-East 1.57 4.97 0.80

The computational times are measured on a computer with an Intel Core i7-
10700K CPU@3.70 Hz without Turbo Boost. The cost evaluation through an
optimized implementation is a future work.

7 Conclusion

In this paper, we introduce SQIsign2D-East, a new variant of SQIsignHD,
which requires only 2-dimensional isogeny computations for the verification,
while SQI-signHD requires 4-dimensional isogeny computations. As a building
block of SQIsign2D-East, we construct a new algorithm, which is a generaliza-
tion of the conventional algorithm called RandIsogImg. In addition, we propose
CompactSQI-sign2D-East, which has shorter signature size but has larger sign-
ing cost.

Both SQIsign2D-East and CompactSQIsign2D-East have less verification
costs than SQIsignHD. On the other hand, the signing costs are expected to be
larger than SQIsignHD though they are expected to be smaller than SQIsign. The
signature size of SQIsign2D-East is longer than both SQIsign and SQIsignHD.
The signature size of CompactSQIsign2D-East is shorter than SQIsign but longer
than SQIsignHD.
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