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Abstract. Civino et al. have characterised diffusion layers that expose an SPN to vulnerabil-

ity from differential cryptanalysis when employing alternative operations coming from groups
isomorphic to the translation group on the message space. In this study, we present a classifica-

tion of diffusion layers that exhibit linearity in parallel alternative operations for ciphers with

4-bit s-boxes, enabling the possibility of an alternative differential attack simultaneously tar-
geting all the s-boxes within the block. Furthermore, we investigate the differential behaviour

with respect to alternative operations for all classes of optimal 4-bit s-boxes, as defined by

Leander and Poschmann (2007). Our examination reveals that certain classes contain weak
permutations w.r.t. alternative differential attacks, and we leverage these vulnerabilities to

execute a series of experiments.

1. Introduction and preliminaries

Differential cryptanalysis, originally introduced by Biham and Shamir in the late 1980s [BS91]
and subsequently generalised [Wag99, Knu95, BCJW02, BBS05], has become one of the corner-
stones for evaluating the robustness of various symmetric primitives. The fundamental premise
of differential cryptanalysis is that analysing the differences (differentials) between pairs of plain-
texts and the corresponding ciphertexts can unveil undesired biases. While differentials can be
calculated with respect to any difference operator, regardless of which operation is responsible
for performing the sum with the round key during encryption, it is usual for the two opera-
tions to coincide. For this reason, classical differential cryptanalysis of a cipher in which the
key is xor-ed to the state is typically performed by studying the distribution of xor-differentials,
whose propagation is traditionally prevented by the combined action of the linear diffusion layer
and the s-box layer. In particular, s-boxes are pivotal for ensuring the security of almost all
contemporary block ciphers, serving as the primary non-linear component within the cipher,
particularly in the case of SPNs. Equally relevant, the efficiency of a cipher is significantly in-
fluenced by the size of the s-boxes. In practical scenarios, s-boxes typically have a size of 4 or 8
bits, with 4 being the most popular choice for ciphers designed to operate on power-constrained
devices [BAK98, BKL+07, SIH+11, BBI+15]. It is clear that the selection of appropriate s-
boxes is critical to fortify the cipher against various types of attacks. In this sense, Leander and
Poschmann have classified 4-bit s-boxes which are optimal w.r.t. standard criteria that guarantee
poor propagation of xor-differentials [LP07].

A recent line of research is focused on the study of alternative difference operators for the
differential cryptanalysis of xor-based ciphers [CBS19, CCS21, Teş22, CCI24]. These new oper-
ators are designed to induce a novel operation with respect to which differentials are computed.
Within this approach, a large class of possible alternative operations has been studied, all of
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which have in common that they are induced by a group of translations isomorphic to the group
of translations acting on the message space by means of the xor addition with the key. In the
context of an SPN, where the encrypted message is generated by iterating through a sequence
of s-box layers, (xor)-linear diffusion, and xor-based key addition layers, altering the differential
operator yields a dual impact. On one hand, it is highly probable that differentials traverse
the s-box layer more effectively, given that its non-linearity is maximised with respect to xor.
On the other hand, differentials do not deterministically propagate through the diffusion layer,
as observed in classical scenarios. This pivotal limitation effectively restricts the success of the
attack only to cases where the target layer is linear not only concerning xor but also with respect
to the operation under consideration for computing differentials.

A first successful attempt based on the study of the alternative differential properties of a
xor-based toy cipher of the SPN family has shown that it is possible to highlight a bias in the
distribution of the differences calculated compared to an alternative operation which is instead
not detectable by means of the standard xor-differential-based approach [CBS19]. The target
cipher featured five 3-bit s-boxes and the operation used to perform the attack acted as the
xor on the last four s-boxes, while on the first one matched with one of the alternative sums
defined by Calderini et al. [CCS21], coming from another translation groups. The advantage of
employing an alternative operation in this case was only derived from the benefit induced by a
single s-box. In a more recent experimental approach [CCI24], we showed that better results in a
similar context can be obtained using an alternative parallel operation, in which every s-box can
be targeted. In this case, the diffusion layer of the cipher was determined through an algorithm,
ensuring that it adheres to the constraint of linearity with respect to both xor and the target
operation.

In this paper, we establish a general result that, in the context of an SPN with 4-bit s-
boxes, characterises all xor-linear maps that are concurrently linear with respect to a parallel
alternative operation (Sec. 2). This finding enables the execution of a differential attack wherein
each s-box affected by a non-trivial differential contributes to the final differential probability
with increased efficacy compared to the conventional xor differentials. Additionally, differentials
propagate deterministically through the linear layer in this scenario. Moreover, we examine all
possible alternative operations on 4 bits and investigate the differential properties of optimal
4-bit s-boxes, following the classification outlined by Leander and Poschmann (a comparable
methodology, albeit in the context of modular addition, was recently employed by Zajac and
Jókay [ZJ20]. Our analysis demonstrates that each class comprises potentially weak permutations
(Sec. 3). When coupled with a diffusion layer as described earlier, these permutations have the
potential to render the cipher susceptible to differential attacks with alternative operations. To
substantiate our findings, we conclude the paper by presenting experimental results on a family
of toy SPNs (Sec. 4).

1.1. Notation. Let V be an n-dimensional vector space over F2 which represents the message
space. We write V = V1 ⊕ V2 ⊕ · · · ⊕ Vb, where each Vj is isomorphic to a vector space B such
that dim(B) = s on which every s-box acts. Thefore we have n = sb. We denote by {ei}ni=1 the
canonical basis of V . If G is any finite group acting on V , for each g ∈ G and v ∈ V we denote
the action of g on v as vg, i.e. we use postfix notation for every function evaluation. We denote
by Sym(V ) the symmetric group acting on V , i.e. the group of all permutation on the message
space, by GL(V,+) the group of linear transformations, and by AGL(V,+) the group of affine
permutations. The identity matrix of size l is denoted by 1l and the zero matrix of size l × h
is denoted by 0l,h, or simply 0l if l = h. We finally denote by T+ the group of translations on
V , i.e. T+ := {σa | a ∈ V, x 7→ x+ a} < Sym(V ). We remind that the translation σk acts on a
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vector x in the same way the key-addition layer of an SPN acts xor-ing the round key k to the
message x, i.e. xσk = x+ k.

1.2. Preliminaries on alternative operations. An alternative operation on V can be defined
given any 2-elementary abelian regular subgroup T < AGL(V,+), that we can write as T = {τa |
a ∈ V }, where τa is the unique element in T which maps 0 into a. Consequently, for all a, b ∈V,
we can define a◦ b := aτb, resulting in (V, ◦) forming an additive group. The operation ◦ induces
a vector space structure on V , with the corresponding group of translation being T◦ = T .
Additionally, for each a ∈ V , there exists Ma ∈ GL(V,+) such that τa = Maσa, meaning that
for every x ∈ V ,

x ◦ a = xτa = xMa + a.

It is also assumed throughout that T+ < AGL(V, ◦), where AGL(V, ◦) is the normaliser in
Sym(V ) of T◦ (i.e., the group of affine permutations w.r.t. ◦). This crucial technical assumption
renders the key-addition layer an affine operator concerning the new operation, enabling the
prediction of how the key addition affects the differentials with a reasonable probability. Further
details on this aspect, which may not be directly relevant to the scope of the current paper, can
be found in Civino et al. [CBS19]. In this context, we define the weak keys subspace as

W◦ := {a | a ∈ V, σa = τa} = {k | k ∈ V, ∀x ∈ V x ◦ k = x+ k}.
W◦ is a vector subspace of both (V,+) and (V, ◦). It is known [CDVS06, CCS21] that W◦ is non
empty and that

2− (n mod 2) ≤ dim(W◦) ≤ n− 2. (1)

Moreover, up to conjugation we can always assume W◦ to be the span of the last d canonical
vectors of V [CCS21]. This allows to represent the new sum in a canonical way [CCS21]: for

each a ∈ V there exists a matrix Ea ∈ F(n−d)×d
2 such that

Ma =

(
1n−d Ea

0d,n−d 1d

)
. (2)

Fixing such an operation as above is therefore equivalent to defining the matrices

Mei =

(
1n−d Eei

0d,n−d 1d

)
=

 1n−d

bi,1

...
bi,n−d

0d,n−d 1d


for 1 ≤ i ≤ n, where bi,j ∈ Fd

2. The assumptions on T◦ and on W◦ imply that Eei = 0 for
n − d + 1 ≤ i ≤ n, bi,i = 0 and bi,j = bj,i. In conclusion, the following result characterises
the criteria that the vectors bi,j must adhere to in order to define an alternative operation as
previously described.

Theorem 1.1 ([CBS19]). Let T◦ < AGL(V,+) be 2-elementary, abelian, and regular, and let
d ≤ n − 2. The operation ◦ induced by T◦ is such that d = dim(W◦), T+ < AGL(V, ◦), and
W◦ = Span{en−d+1, . . . , en} if and only if the matrix Θ◦ ∈ (F2d)

(n−d)×(n−d) defined as

Θ◦ :=


b1,1 b1,2 · · · bn−d,1

b2,1 b2,2 · · · bn−d,2

...
...

. . .
...

bn−d,1 bn−d,2 · · · bn−d,d


is zero-diagonal, symmetric and no F2-linear combination of its columns is the null vector. The
matrix Θ◦ is also called the defining matrix for ◦.
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In the subsequent discussion, the term alternative operation refers to an additive law ◦ on V
as defined above.

2. Parallel operations and their automorphism groups

Let ◦ be an alternative operation on the block-sized space V . As outlined in the introduction,
if λ ∈ GL(V,+) represents a (xor)-linear diffusion layer, and ∆ ∈ V is an input difference
traversing λ, predicting the output difference with respect to ◦, i.e.,

xλ ◦ (x ◦∆)λ,

becomes inherently challenging without additional assumptions on λ that ensure a sufficiently
high predictive probability. For this reason, the examination of the following object becomes
crucial: in cryptographic terms, it contains potential diffusion layers that allow differentials,
whether computed with respect to xor or ◦, to propagate with a probability of 1.

Definition 2.1. Let ◦ be an alternative operation on V . Let us define

H◦ := {f ∈ GL(V,+) | ∀a, b ∈ V : (a ◦ b)f = af ◦ bf}

to be the subgroup of GL(V,+) of permutations that are linear w.r.t. the operation ◦. More
precisely, denoting by AGL(V, ◦) the normaliser in Sym(V ) of T◦ and by GL(V, ◦) the stabiliser
of 0 in AGL(V, ◦), we have H◦ = GL(V,+) ∩GL(V, ◦).

The structure of the group H◦ in its most general case has not been understood yet. This
work addresses this challenge in a specific scenario, guided by assumptions that are deemed
reasonable within the context of differential cryptanalysis.

Assumption 1: ◦ is a parallel operation. While the operation ◦ could, in theory, be defined on
the entire message space V , studying the differential properties of the s-box layer, considered as
a function with 2n inputs, is impractical for standard-size ciphers. For this reason, we focus on
operations applied in a parallel way to each s-box-sized block, i.e., ◦ = (◦1, ◦2, . . . , ◦b), where for
each 1 ≤ j ≤ b, ◦j is an operation on Vj . In this scenario, every operation is acting independently
on the s-box space B, regardless of the others. This motivates the following definition.

Definition 2.2. Let ◦ be an alternative operation on V . We say that ◦ is parallel if for each
1 ≤ j ≤ b there exists an alternative operation ◦j on Vj such that for each x, y ∈ V we have

x ◦ y =

x1

...
xb

 ◦

y1
...
yb

 =

x1 ◦1 y1
...

xb ◦b yb

 ,

where x = (x1, x2, . . . , xb), y = (y1, y2, . . . , yb) and each component belongs to the s-box-sized
space, i.e., xj , yj ∈ Vj

∼= B for 1 ≤ j ≤ b.

In the notation of Sec. 1.2, up to a block matrix conjugation, we can assume that every
element x ∈ V is associated to a translation τx = Mxσx, with

Mx =

M◦1
x1

· · · 0
...

. . .
...

0 · · · M◦b
xb


where M◦i

xi
is the matrix associated to the translation τxi

with respect to the sum ◦i, as defined
in Eq. (2). Notice that it can be assumed, without loss of generality, that all the operations ◦j
coincide.
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Assumption 2: dim(W◦j
) = s− 2. According to Eq. (1), every operation ◦j defined at the s-box

level must satisfy the bound dim(W◦j
) ≤ s − 2, being s = dim(B). The situation where the

(upper) bound is reached holds particular interest for several reasons, as elaborated further in
Civino et al. [CBS19]. Notably,

• if the s-box size s is four, the case where dim(W◦j
) = 2 is the sole possibility;

• the considered case stands today as the only one for which the structure of H◦j
is well

understood.

For the reader’s convenience, we present the classification result for H◦j obtained by Civino et
al. in the considered case. Additionally, it is worth recalling that, according to Theorem 1.1, any
◦j for which dim(W◦j

) = s− 2 is determined by a single non-null vector b ∈ (F2)
s−2.

Theorem 2.3 ([CBS19]). Let ◦j be an alternative operation such that d = dim(W◦j
) = s − 2

defined by a vector b ∈ (F2)
s−2, and let λ ∈ (F2)

s×s. The following are equivalent:

• λ ∈ H◦j
;

• there exist A ∈ GL((F2)
2,+), D ∈ GL((F2)

d,+), and B ∈ (F2)
2×d such that

λ =

(
A B

0d,2 D

)
and bD = b.

We are now prepared to present the first novel contribution of this work, wherein we char-
acterise the group H◦ for a parallel operation ◦ = (◦1, ◦2, . . . , ◦b) with components at the s-box
level satisfying dim(W◦j

) = s − 2. For the sake of simplicity and without losing generaly, we
assume that the b operations at the s-box level coincide.

Theorem 2.4. Let ◦ = (◦1, ◦2, . . . , ◦b) be a parallel alternative operation on V such that for
each 1 ≤ j ≤ b ◦j is an alternative operation on Vj. Let us assume that every ◦j is such that
dim(W◦j

) = s− 2 and it is defined by a vector b ∈ (F2)
s−2. Let λ ∈ (F2)

n×n. Then, λ ∈ H◦ if
and only if it can be represented in the block form

λ =


A11 B11

C11 D11
· · · A1b B1b

C1b D1b

...
. . .

...
Ab1 Bb1

Cb1 Db1
· · · Abb Bbb

Cbb Dbb

 ,

where

(1) Aij ∈ (F2)
2×2 such that for each row and each column of blocks there exists one and only

one non-zero Aij; moreover, all the non-zero Aij are invertible;

(2) Bij ∈ (F2)
2×(s−2);

(3) Cij = 0(s−2)×2;

(4) Dij ∈ (F2)
(s−2)×(s−2) such that if Aij is zero, then bDij = 0, and if Aij is invertible,

then bDij = b. Moreover, the matrix D defined by

D :=

D11 · · · D1b

...
. . .

...
Db1 · · · Dbb


is invertible.

Proof. The proof involves standard linear algebra techniques, but its extensive and laborious
nature necessitates omission due to page limitations. □
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Table 1. Optimal 4-bit permutations according to Leander and Poschmann

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
G0 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Cx 9x 3x Ex Ax 5x
G1 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Ex 3x 5x 9x Ax 12x
G2 0x 1x 2x Dx 4x 7x Fx 6x 8x Bx Ex 3x Ax Cx 5x 9x
G3 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx 5x 3x Ax Ex Bx 9x
G4 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx 9x Bx Ax Ex 5x 3x
G5 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Bx 9x Ax Ex 3x 5x
G6 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Bx 9x Ax Ex 5x 3x
G7 0x 1x 2x Dx 4x 7x Fx 6x 8x Cx Ex Bx Ax 9x 3x 5x
G8 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex 9x 5x Ax Bx 3x 12x
G9 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx 3x 5x 9x Ax 12x
G10 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx 5x Ax 9x 3x 12x
G11 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx Ax 5x 9x Cx 3x
G12 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Bx Ax 9x 3x Cx 5x
G13 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx 9x 5x Bx Ax 3x
G14 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx Bx 3x 9x 5x 10x
G15 0x 1x 2x Dx 4x 7x Fx 6x 8x Ex Cx Bx 9x 3x Ax 5x

3. Differential properties of optimal s-boxes

In this section we delve into the examination of the differential properties exhibited by all pos-
sible 4-bit permutations, with respect to all possible alternative operations defined as in Sec. 1.2.
In particular, we set s = 4 and therefore consider B = F4

2. We begin by acknowledging that,
despite the compact size of the space, the count of alternative operations on B is considerable:

Proposition 3.1 ([CCS21]). There exist 105 different elementary abelian regular subgroups
groups T◦ in AGL(F4

2,+). Furthermore, each of them satisfies T+ < AGL(F4
2, ◦) and dimW◦ =

s− 2 = 2.

We recall that given a permutation f ∈ Sym(B) we can define

δf (a, b) = #{x ∈ B | xf + (x+ a)f = b}.

The differential uniformity of f is defined as δf := maxa ̸=0 δf (a, b) and it represent the primary
metric to consider when assessing the resistance of an s-box to differential cryptanalysis [Nyb93].

Several cryptographic properties, including differential uniformity, are preserved under affine
equivalence for vectorial Boolean functions. Two functions, denoted as f and g, are considered
affine equivalent if there exist two affine permutations, α and β, in AGL(V,+) such that g = βfα.

Leander and Poschmann [LP07] provided a comprehensive classification (up to affine equiv-
alence) of permutations over B = F4

2. They identified 16 classes with optimal cryptographic
properties. All 16 classes exhibit a classical differential uniformity equal to 4, which represents
the best possible value for s-boxes in Sym(B). The representatives of the 16 classes are listed in
Table 3, where each vector is interpreted as a binary number, most significant bit first.

3.1. Dealing with affine equivalence. Our goal is to analyse the differential uniformity of
each optimal s-box class, with respect to every alternative operation ◦ on B. The definitions
given above can be generalised in the obvious way setting δ◦f (a, b) = #{x ∈ B | xf ◦ (x◦a)f = b}
and calling ◦-differential uniformity of f the value δ◦f := maxa̸=0 δ

◦
f (a, b).
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It is noteworthy that, unlike in the case of classic differential uniformity, the value of δ◦f is
not invariant under affine equivalence. However, verifying the ◦-differential uniformity of g2Gig1
for any optimal class and every pair g1, g2 ∈ AGL(V,+) would be impractical. Therefore, a
reduction in the number of permutations to be checked is necessary, and for this purpose, we
make the following observations. First, similar to the classical case, the ◦-differential uniformity
is preserved under affine transformations w.r.t. ◦.

Proposition 3.2. Given f ∈ Sym(B) and g1, g2 ∈ AGL(B, ◦) we have

δ◦g1fg2(a, b) = δ◦f (g2(a), g
−1
1 (b)).

Moreover, Proposition 3.1 establishes that for any ◦ derived from a translation group in
AGL(B,+), the +-translations are affine with respect to ◦. This initial observation allows us
to narrow down the analysis to g2Gig1 with g1, g2 ∈ GL(B,+), which still remains impractical.
Furthermore, considering that H◦ = GL(B,+) ∩GL(B, ◦), Proposition 3.2 establishes that left
and right multiplication by elements in H◦ preserves both ◦ and +-differential uniformity. It is
noteworthy that during this process, the rows of the matrix containing all the δ◦f (a, b) (DDT◦)
are merely shuffled, thereby preserving the highest element of each row. Therefore, the following
conclusion can be easily obtained.

Proposition 3.3. Let g1, g2 ∈ GL(B,+) and f ∈ Sym(B). For any g′1 ∈ g1H◦ and g′2 ∈ H◦g2
we have

δ◦g2fg1 = δ◦g′
2fg

′
1
.

Proof. Take h1, h2 ∈ H◦ such that g′1 = g1h1 and g′2 = h2g2. Then,

xg′2fg
′
1 ◦ (x ◦ a)g′2fg′1 = xh2g2fg1 ◦ (xh2 ◦ ah2g2fg1)h1,

implying that δ◦g′
2fg

′
1
(a, b) = δ◦g2fg1(ah2, bh

−1
1 ). So, δ◦g′

2fg
′
1
= δ◦g2fg1 . □ □

The final proposition allows us to focus solely on g1 and g2 within the left and right cosets of
H◦. These reductions facilitate the analysis of the potential ◦-differential uniformities attainable
across all classes of optimal permutations for the 105 conceivable alternative sums defined over
B. For each of the 105 alternative operations, we systematically explored each of the 16 classes,
following the described procedure, and we recorded the ◦-differential uniformity for every can-
didate. To streamline the presentation, we calculated the average across the 105 operations and
presented the consolidated results in Tab. 3.1.

In our examination, we observe that if, for a given operation ◦, certain elements within
an affine equivalence class yield a ◦-differential uniformity δ, then this value δ is achieved by
some element in the entire class for all alternative operations. Our analysis reveals that certain
optimal functions may exhibit the highest differential uniformity (16) for alternative operations,
specifically the classes G0 (containing, e.g., the s-box S1 of Serpent [BAK98]), G1 (containing,
e.g., the s-box of Present [BKL+07]), G2, and G8. Conversely, the classes G3, G4, G5, G6, G11,
and G12 demonstrate more favorable behavior concerning alternative operations.

4. Experiments on a 16-bit block cipher with 4-bit s-boxes

In this concluding section, we aim to apply the results obtained above to a family of (toy)
ciphers. These ciphers may exhibit security under classical differential cryptanalysis but reveal
vulnerabilities to the alternative differential approach.

In our experiments, we set V = F16
2 , n = 4, and s = 4, defining ◦ as the parallel sum by

applying the alternative operation defined by the vector b = (0, 1) to each 4-bit block. Moreover,
all our ciphers will feature the 4-bit permutation γ : F4

2 → F4
2 defined by the sequence (0x, Ex,



OPTIMAL S-BOXES AGAINST ALTERNATIVE OPERATIONS 8

Table 2. Avg. number of functions with given ◦-differential uniformity

Class

δ◦
2 4 6 8 10 12 14 16

G0 0 914 7842 3463 420 19 0 14
G1 0 1019 10352 4226 560 0 0 18

G2 0 1003 8604 3805 462 21 0 16
G3 0 16733 117740 27639 1779 0 0 0
G4 0 1101 9295 2715 179 0 0 0

G5 0 2479 24135 5402 639 0 0 0
G6 0 1632 10842 3071 218 0 0 0
G7 0 1257 10679 2994 186 28 0 0

G8 0 1691 12821 6113 583 93 0 24
G9 0 1228 7734 2693 154 39 0 0

G10 0 1228 8063 2763 166 41 0 0

G11 0 1637 9940 2941 214 0 0 0
G12 0 2541 16832 5308 352 0 0 0

G13 0 1124 9520 2416 217 15 0 0
G14 0 1207 7641 2584 160 51 0 0
G15 0 1227 7776 2630 163 52 0 0

Bx, 1x, 7x, Cx, 9x, 6x, Dx, 3x, 4x, Fx, 2x, 8x, Ax, 5x) as its s-box. Precisely, four copies of γ will
act on the 16-bit block. Notice that the s-box γ ∈ belongs to G0 and has δγ = 4 and δ◦γ = 16.

In all the experiments described below, we consider the SPN whose i-th round is obtained by
the composition of the parallel application of the s-box γ on every 4-bit block, a ‘diffusion layer’ λ
sampled random from H◦, and the xor with the i-th random round key. We study the difference
propagation in the cipher in a long-key scenario, i.e., the key-schedule selects a random long key
k ∈ F16r

2 where r is the number of rounds. To avoid potential bias from a specific key choice,
we conduct our experiments by averaging over 215 random long-key generations. This approach
gives us a reliable estimate of the expected differential probability for the best differentials in
this cipher.

In 150 distinct executions, spanning a range of rounds from 3 to 10, we calculated the dis-
crepancy between the most effective ◦-trail and +-trail. To manage computational resources,
our focus was narrowed down to input differences with a Hamming weight of 1.

The results are depicted in Fig. 1, where each dot represents an individual simulation. The x
axis corresponds to the negative logarithm of the probability of the best ◦ differential, while the
y axis represents the difference between that value and the negative logarithm of the probability
of the best + differential. Darker dots indicate a higher number of rounds, as explained in the
legend. Notably, about half of the dots lie above zero, suggesting that the best ◦ differential
consistently outperforms the best + differential until they become indistinguishable. Interest-
ingly, this convergence often occurs when the ◦ probability is already very close to 16, providing
potential candidates for our distinguisher attack.
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[ZJ20] Pavol Zajac and Matúš Jókay, Cryptographic properties of small bijective s-boxes with respect to
modular addition, Cryptography and Communications 12 (2020), 947–963.

Department of Mathematics - University of Trento

Email address: marco.calderini@unitn.it

DISIM - University of L’Aquila

Email address: roberto.civino@univaq.it

COSIC - KU Leuven

Email address: riccardo.invernizzi@kuleuven.be


	1. Introduction and preliminaries
	1.1. Notation
	1.2. Preliminaries on alternative operations

	2. Parallel operations and their automorphism groups
	3. Differential properties of optimal s-boxes
	3.1. Dealing with affine equivalence

	4. Experiments on a 16-bit block cipher with 4-bit s-boxes
	References

