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Abstract: The use of alternative operations in differential cryptanalysis, or alternative notions of differentials,
is lately receiving increasing attention. Recently, Civino et al. managed to design a block cipher that is secure
with respect to the classical differential cryptanalysis performed using XOR-differentials, but weaker with
respect to the attack based on an alternative difference operation acting on the first s-hox of the block. We
extend this result to parallel alternative operations, i.e. acting on each s-box of the block. First, we recall the
mathematical framework needed to define and use such operations. After that, we perform some differential
experiments against a toy cipher and compare the effectiveness of the attack with respect to the one that uses
XOR-differentials.
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1 Introduction

Differential cryptanalysis is a powerful tool introduced in the beginning of the 90s to attack some crypto-
graphic symmetric primitives, namely block ciphers [1]. The attack, which has later been generalised [2-4], is
typically a chosen-plaintext attack that takes advantage of nonuniform relations between input differences
and corresponding output differences.

To mitigate vulnerability to these attack methods, the cryptographic transformations employed within the
substitution boxes (s-boxes) of the cipher should aim for the lowest possible level of differential uniformity [5]
(for a comprehensive exploration of the differential uniformity of vectorial Boolean functions, readers can
refer to Mesnager et al.’s survey [6]). It is essential to emphasize that the calculation of differential uniformity
is based on the XOR operation. Indeed, in a traditional scenario of cryptanalysis of block ciphers, the difference
operation classically taken into consideration by both designers and cryptanalysts is the one used to mix the
key during the encryption process. In many cases, this operation is the bit-wise addition modulo two, i.e. the
XOR. Nevertheless, it is worth noting that alternative types of operations may also be contemplated. For
example, Berson introduces the modular difference to study the MD/SHA family of hash functions [7], and
a similar method has been used [8] to cryptanalyze the block cipher PRESENT [9]. Borisov et al. [10] proposed a
new type of differential known as multiplicative differential to attack IDEA [11]. This inspired the definition of
c-differential uniformity [12], which has been extensively studied in the last couple of years, even if the
cryptographic implication of such c-differential uniformity on attacking block ciphers remains a subject of
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ongoing debate [13]. In 2019, Civino et al. showed that a differential attack making use of alternative differences
may be effective against XOR-based ciphers that are resistant to the classical differential attack [14]. More
precisely, they designed a small-scale substitution-permutation network (SPN) inspired by the block cipher
PRESENT, with five s-boxes of three bits each. They introduced a new sum on the whole message space that
acts as the XOR on the last four s-boxes, while the first one matches with one of the alternative sums defined by
Calderini et al. [15], coming from another elementary abelian regular group of translations (translation groups
in short). Using such operation, they were able to mount a distinguishing attack on five rounds of the cipher.
Moreover, they showed that this result cannot be obtained with the traditional differential approach, i.e. by
looking at the distribution of classical differentials.

In this work, we show that this idea can be extended to the whole block, attacking all the s-boxes at the
same time. The difference operator that we consider comes again from the family of alternative operations
introduced by Calderini et al. [15]. Although it could be made more general without effort, for the ease of
description, we focus here on the case of translation-based ciphers [16], which are the most common form of
SPNs nowadays, where the encryption is realised by subsequent iterations of a non-linear s-box layer, a
(usually) linear permutation, and an XOR-based key addition.

In order to guarantee deterministic propagation of differences through the diffusion layers of the ciphers,
as happens in the classical scenario, we need to characterise the XOR-linear bijective maps that are also linear
with respect to another (parallel) sum. As we will discuss later, the mentioned problem is of general interest in
cryptography, and results in this direction will produce examples of XOR-based trapdoor ciphers for which a
non-XOR distinguisher may exist. Unfortunately, only partial solutions to this problem are known [14,17,18].
Keeping our focus in this direction, after performing some computational experiments, we are able to design a
toy cipher similar to the one suggested in the study by Civino et al. [14], with four parallel s-boxes of four bits
each' together with an alternative parallel operation ° that can be used to attack it. A computer-aided direct
check shows that the diffusion layer of the proposed cipher is a linear permutation with respect to both the
operations + and °, which is the pivotal condition for the success of the attack.

We show the results of a distinguishing attack for a number of rounds up to 17, concluding that differ-
entials based on our alternative operation have much higher probabilities. Moreover, the difference in prob-
ability between alternative differentials and classical differentials that we obtain is higher than the one
obtained in the study by Civino et al. [14], showing the effectiveness of our approach.

The article is organised as follows: in Section 2, we introduce the notation and describe the general setting
for our attack; in Section 2.1, a brief summary on the construction of alternative operations coming from
elementary abelian regular groups is given; in Section 3, we design a 16-bit cipher and a suitable parallel
alternative operation, and perform experiments to study its resistance to differential cryptanalysis. We show
the consistent improvement of our approach with respect to the classical one; and in Section 4, we conclude
the article with the discussion of some open problems.

2 Preliminaries

Let V = (F,)" be a binary vector space, with canonical basis ey,..., e,, which will represent the plaintext-
ciphertext space of an n-bit block cipher. We denote by

T={gja€V,g,: x+~ x+a} < Sym(V)

the group of translations on V. We stress that the action of this translation group on the message space V
represents the XOR-based key-addition layer in a block cipher. Let us also note that T as a subgroup of the
symmetric group Sym(V) is elementary, abelian, and regular. We recall here the definition of regularity.

1 Itis important to specify that the design technique is completely scalable and that we decided to perform experiments on a small-
sized cipher only for a matter of efficiency.
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Definition 1. A permutation group G acting transitively on a set V is said to be regular if, for all v € V, the
stabilizer of G at v G, = {g € G|vg = v} is trivial.

It is well known that any other elementary abelian regular subgroup of Sym(V) is conjugated to T.

Theorem 1. [19] Let 7 < Sym(V) be an elementary abelian regular subgroup. Then, there exists g € Sym(V)
such that 7 =T = g"'Tg.

Let us now show how to define another operation on V starting from another elementary abelian regular
group of translations.

Definition 2. Let 7 < Sym(V) be an elementary abelian regular group. Let us define an additive group
operation ° on V by letting for each a and b in V

acb=an,

where 73 is the unique element of 7 sending 0 to b.

Proposition 1. If ° is defined as above, then (V, °) is a vector space over [F,, with associated translation group
T. = 7. Moreover, (V, ) = (V, +).

The subspaces introduced below are essential to understand the structure of alternative operations
coming from translation groups. We refer to Civino et al. for a more detailed discussion [14].

Definition 3. Given an operation ° as above, a vector k € V is called a weak key if, for each x € V, it holds
X + k=Xx o k. The set

W. = {klk € V, k is aweak key}

is called the weak-key space, and is a subspace of both (V, +) and (V, ¢ ). We denote by d = 1 its dimension.
Moreover, let us define a dot product on V such that for each a,b € V,

a-b=a+b+a-b

The set of elements that can be expressed as dot products is denoted by
U. ={x-ylx,y € V}

and is called the set of errors.

Finally, denoting by GL(V, +) and GL(V, <) the groups of linear permutations with respect, + and °,
respectively, we define

H. = GL(V,+) N GL(V, °).

We now briefly present the impact of an alternative sum ° on the differential cryptanalysis of SPNs. The
classical differential attack relies on the property that each XOR-difference is maintained the same after the
key is XOR-ed to the state. This is not the case when considering e -differences. Indeed, let us consider two
inputs with difference 4, denoted by x and x ° A. After the key addition, the difference becomes

(x+K)o((x o A)+ k)= A,

However, it can be shown [14] that if T < AGL(V, ) and T. < AGL(V, +), then
A =A+k-A, @

i.e. in a particular setting, the output difference after the key-addition layer can be expressed in terms of the
dot product introduced in Definition 3. By definition, k - 4 belongs to U., and therefore, the number of possible
output differences is bounded by |U.|. The presence of the error in equation (1), of course, forces us to consider
o -differential probabilities introduced by the key-addition layer, unlike in the classical case, yielding a dis-
advantage in terms of the final probability of the differential propagation.
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On the other hand, the s-box is usually designed to have the lowest possible differential uniformity with
respect to the XOR. This may no longer be true with respect to the operation ° . A higher differential uniformity
creates trails with higher probability for ° and counterbalances the effect of differential probability intro-
duced by the key addition.

Finally, and more importantly, the diffusion layer A of an SPN is usually an XOR-linear map. In order to
mount a successful ° -differential attack, we need A to be ° -linear as well, i.e. A € H.. Otherwise, A would be a
°-non-linear map and the effect of block-sized differential probabilities introduced by the diffusion layer
would make the approach completely ineffective. This represents a strong motivation to the study of H..

We are now ready to show explicitly how operations coming from new translation groups are constructed.

2.1 Construction of alternative operations

For the reason explained above (equation (1)), it is convenient to consider operations ° on V coming from a
translation group T < Sym(V) such that T < AGL(V, °) and T. < AGL(V, +), which is the setting in which we
will assume to be from now on. We will make use of the construction of such operations as presented in the
study by Calderini et al. [15], but we will omit here many of the details, that the interested reader can find in
the cited article.

Recall that we denote n = dim(V) and that we have 1 < d = dim(W.) < n - 2 [15]. We will focus on the
particular case d = n — 2. The reason for this is that the case when the dimension of the weak-key space
reaches its upper bound is one of those in which the structure of H. is known (Theorem 2). Thanks to Calderini
et al. [15, Theorem 3.9], we may assume, up to conjugation, that W. is spanned by {es, ...,e,}. In this setting, from
Calderini et al. [15, Theorem 3.11] (but see also Civino et al. [14, Theorem 3.3]), we have

a- e =art, = aM, + e,

where

and M, =1y for j > 3, where I, denotes the identity matrix of size k x k and @y, is the zero matrix of size
k x ¢. The element b is a non-zero vector in (I,)""2, which completely determines °. Once the operation is
defined on the basis, it is easy to compute a ° b, fora, b € V.

Let r and s be two positive integers, and we will denote by ([F;)"™* the set of matrices of dimension r x s.
The following result is due to Civino et al. [14, Theorem 5.3] and characterises H. in the cased = n - 2.

Theorem 2. Let b € ()% be as above and A € (F,)™". The following are equivalent:
s A€H.;
o there exist A € GL((F,)%, +), D € GL((F,)%, +), and B € (F,)*¢ such that

A B
= lais 3

and bD = b.

3 Experiments on a 16-bit block cipher with 4-bit s-boxes

As anticipated, the idea of this work is to design an SPN that is weak with respect to a differential attack based
on an alternative parallel operation ° for which it is possible to show that the diffusion layer of the cipher
belongs to H.. We start by explaining explicitly what we mean by parallel: letting V = V1®...® V;,, with
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Vi= ()" fori=1,..,m, and x € V, we can split x into m vectors xi,..., X, of n components each, and we can
assume that the target SPN acting on a space of m x n bits contains m s-boxes Sy, ..., Sy, such that S; acts on x, S;
on Xz, and so on. For this reason, we aim to mount an alternative differential attack using a sum ° acting as

X M1 X °1)

Xm Y Xm ° mYm

bl

where the sum °; acts on V;. As explained previously, the feasibility of the attack relies on an extension of
Theorem 2 to parallel sums.

In the absence of a general result in this sense, we have restricted our attention to the case where
W., = {k|lk € V;is aweak key} has dimension n - 2, for i = 1,..., m, and we have performed some computa-
tional experiments using Magma [20], which we describe below.

3.1 The target cipher and its trapdoor

FixingV = (,)'%,n = 4,andm = 4 and letting ° be the parallel sum defined by applying each 4-bit block the alternative
operation ° 4 defined by the vector b = (0, 1) (see Section 2.1), we could check using Magma that the diffusion layer A
defined in Figure 1 belongs to H., ie. it is a permutation that is linear with respect to to both + and . Note that the
mentioned matrix, which will be chosen as the diffusion layer of the target SPN, is obtained from the cyclic shift of two
4 x 4 binary sub-matrices. For the benefit of the reader, we display the Cayley table of the 4-bit operation ° 4 induced by
the vector b = (0, 1) in Figure 2. The entries in which a ° 4 b differs from a + b are highlighted.

The target cipher then features the 4-bit permutation y : (IF,)* — (I,)* defined in Figure 3 as its s-box.

Here, each vector is interpreted as a binary number, with most significant bit first. Precisely, four copies of
y will act in a parallel way on the 16-bit block. Note that the s-box y is optimal according to Leander and
Poschmann [21]. By computing the difference distribution table (DDT) of y with respect to XOR, we obtain the
result displayed in Figure 4. As it is known, y is differentially 4-uniform, which is the best result for a
permutation over (I,)* (see, e.g. Leander and Poschmann [21]).

However, if we compute the DDT using our new operation ° 4 as difference operator, we obtain the result
displayed in Figure 5.

We can note that y turns out to be differentially 16-uniform with respect to °,4; in particular, when the
input difference is 7y, the output difference becomes 6, with probability 1. Beside this, it is clear from the table
that the differential behaviour of the s-box is completely different when the alternative operation is consid-
ered and the map looks far away from being non-linear as necessary.

0000000000001000
0010001000100111
0010001000100000
0000000000000001
1000000000000000
0111001000100010
0000001000100010
0001000000000000
0000100000000000
0010011100100010
0010000000100010
0000000100000000
0000000010000000
0010001001110010
0010001000000010
0000000000010000

Figure 1: The chosen diffusion layer.



6 =—— Marco Calderini et al.

Figure 2: Cayley table of °,.

Figure 3: The chosen s-box y.
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By Ax 9x 8x Ex Fx Cx Dy 3x 2x 1x Ox 65 7x 44 B«
Cx Dx Ex Fx 9x 8x Bx Ax 55 45 7« 64 0x 1x 24 3«
Dyx Cx Fx Ex 8x 9x Ax Bx 4x 5x 6x 7x 1x Ox 3x 2x
Ex Fx Cx Dx Bx Ax 9x 8x 7x 6x Bx 4x 2x 3x Ox 1«
Fx Ex Dx Cx Ax Bx 8x 9x 6x Tx 4x 5x 3x 2x 1x O«

Tx 8x 9x A C
x Tx 8x 9x Ax Bx Cx Dx Ex Fx
6% 9x 8x B D

A

~N O

X

T [Ox 1x 24 3x 44 Bx 6x Tx 8x 9x Ax Bx Cx Dy Ex Fy
277|0x Ex By 1x 7x Cx 9x 6x Dx 3x 4x Fyx 2« 8¢ A 5,
4+ |0x 1x 2« 3x 44 Bx 6x 7x 8x 9x Ay Bx Cx Dx Ex Fy
0416 - - - -« .« . . . .
1x - - 44 - - 44
2| - 22222222
|- 4 4 - - 4 4 -

4y 4 4 - 2 2 - 2 2
5.|- 4 4 2 2 2 2

6x| 4 4 2 2 2 2

Tx|: e s 40402 2 2 2 .
8x| 4 2 2 -4 2 2
Ol - - 4 2 2 - - 4 2 2
Acl- 2 2 2 2 2 2 - 22
By 2 2 2 2 2 2 - 2 2
Cx|- 2 2 2 2 22 - - 2 2
Dy|- 2 2 - 2 2 2 - 2 2 - 2
Ex|- 4 2 2 - 402 2

Fx 4 2 2 4 - 2 2

Figure 4: DDT of y with respect to +.

DE GRUYTER

In our experiments described in the following section, we consider the SPN whose ith round is obtained by
the composition of the parallel application of the s-box y on every 4-bit block, of the diffusion layer A defined
above, and of the XOR with the ith round key.

3.2 Brute-forcing differentials

We study the difference propagation in the cipher in a long-key scenario, i.e. the key-schedule selects a random long
key k € F}¥, where r is the number of rounds. In order to mitigate the possible bias due to a particular key choice,
we run our experiments by taking the average over 21° random long-key generations. This approach will provide us
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04|0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx
0416 - - - - - .~ - -
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Figure 5: DDT of y with respect to °.

with a good estimate of the expected differential probability of the best differentials on this cipher. The experi-
mental computations, carried out by brute-forcing all the possible differentials, show that the best i-round differ-
ential for the classical XOR difference is always less likely than the best i-round differential computed using the
mentioned parallel operation, fori = 1,..., 17. The results, round per round, are displayed in Figure 6. In particular,
when i = 17, the best +-differential is 0060, — 0700, with probability 27149%, while using the ° difference asso-
ciated to b = (0, 1), the best 17-round e -differential is 0070, = 0600, with probability 271441,

Computational evidence shows that similar results, even with a faster diffusion, can be obtained by
choosing the diffusion layer of the cipher as a random matrix of H.. This suggests that, in principle, every
matrix of H. could represent a trapdoor diffusion layer for the cipher, with respect to a differential distin-
guishing attack that exploits the knowledge of the operation .

4 Open problems

In this article, we have demonstrated that when the diffusion layer of an SPN exhibits linearity not only with
respect to the XOR operation, as traditionally expected, but also in relation to an alternative operation
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Figure 6: Best +-differential probability vs best ° -differential probability.
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stemming from a different translation group, this particular characteristic can be leveraged by a cryptanalyst
to carry out a distinguishing attack employing alternative differentials. However, it can be quite challenging to
discern which maps meet this criterion. What we require is an extension of Theorem 2 to the case of parallel
operations, enabling the simultaneous targeting of all the s-boxes within the cipher and taking advantage of
the lower non-linearity of the confusion layer. One potential approach to address this issue might involve
attempting to represent the linear layer in a manner akin to the blocks demonstrated in Theorem 2. Based on
our empirical findings, we offer the following hypothesis:

Conjecture 1. Let V= Vi®...® V,, with V; = (F)" fori = 1,..., m, and let o = (¢, ..., ° ) be a parallel alter-
native operation as in Section 3, with dim(W. i) = n - 2 for all i. Then, the cardinality of H. is at least
n-4
m3-ml-3- 236 |_| 23 = 2M[(m? - m)2n2—5n+6 -1].
=0

This illustrates that H. may possess a sufficient size to contain matrices that appear to function as
effective diffusion layers but, in reality, conceal trapdoor vulnerabilities.

Another crucial concern is the elimination of the assumptiond = n - 2, as this would enable us to consider
a broader range of operations. Nevertheless, as of the present writing, we are unaware of the existence of a
more comprehensive version of Theorem 2 that eliminates the condition d = n - 2. Consequently, the prospect
of an extension to the parallel case remains unknown.

In conclusion, it is evident that the influence of this approach on differential probabilities is intrinsically
linked to the cipher’s unique attributes. Computational evidence underscores the fact that even a minor
modification in the design, such as altering the s-box or the diffusion layer, can have a profound influence
on the resultant probabilities and outcomes. This heightened sensitivity to design specifics poses a challenge
when attempting to establish general conjectures that can be universally applicable to different ciphers. In
addition, it is important to note that these resulting probabilities are heavily contingent on the fixed alter-
native operations. Notably, within F1, a vast number of approximately 2%’ potential parallel alternative
operations can be considered, working over 4-bit blocks.

A final thought to consider is the observation that, as we have demonstrated, alternative operations have
the potential to diminish the resistance of an s-box to differential cryptanalysis. This is further exemplified by
the fact that a 4-bit permutation, which is considered optimal (according to the criteria in the study by Leander
et al. [21]), exhibits the lowest possible differential uniformity when coupled with the operation defined in
Figure 2. This raises an interesting open problem: the complete analysis of differential properties concerning
alternative operations of various s-boxes, akin to what has been explored for the 4-bit permutations with
respect to modular addition [22]. Even when focusing on small dimensions like 4-bit permutations, this under-
taking requires some efforts. It is important to note that, in this context, there are 106 possible operations
available (as detailed in the study by Calderini et al. [15, Table 1]), including the XOR. Moreover, within the
same affine-equivalence class of a given s-box, different functions may exhibit varying behaviour with respect
to a fixed alternative operation.

We believe that the experimental results of this article show why the mentioned problems can be of
interest in this area of research in cryptanalysis.
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