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Introduction

Differential cryptanalysis [3] is probably one of the most efficient and more used
techniques to attack modern ciphers. It consists in trying to find recurrent re-
lationship between a change in the plain message and the consequent change
in the ciphertext (the encrypted message). If one is able to find a relationship
that occurs with high enough frequency, it can unveil important information
about the secret key used in the encryption.
Since the message space is generally a vector space over F2, changes in the
message can be seen as differences with respect to the XOR, the usual sum
over (F2)n. In this work we analyze the results that we can obtain by apply-
ing differential cryptanalysis with respect to an alternative sum defined on the
message space. This general idea has been widely discussed by many authors
(e.g. [1], [2]). However more recently Calderini et al. ([7],[5],[6]) suggested a
new approach, based on the use of groups isomorphic to the translation group.
Each of these groups allows us to define a sum which induce on the message
space the structure of vector space. They also show strong connections with
important algebraic structures such as radical rings ([10]), and this fact can be
exploited ([7], [12]) to give them a convenient representation and a fast way to
compute them. In [12] these particular sums are used to mount an attack on
a block cipher that can be considered secure with respect to classical differen-
tial cryptanalysis, but may be broken with this new technique. Of course, the
structure and the behavior of block ciphers is well known when dealing with
the traditional XOR. We need to better investigate and understand it in terms
of the newly introduced operation in order to mount a successful attack.
The aim of this work is to extend the results obtained in [7] and [12] to some
cases they did not cover. In this way we provide a better understanding of
bounds and conditions given in those articles, and in some cases we also sug-
gest a further generalization of the results obtained. Moreover, we open a path
for the use of attacks like the one presented in [12] in new settings, potentially
leading to new interesting results.
In Chapter 1, we present basic concepts and definitions that we will use through
all the work. In Chapter 2, we give a short but sufficient (at least for our pur-
poses) introduction to cryptosystems, and especially block ciphers. We explain
what it means for a cryptosystem to be secure, and how this security can be
threatened. In Chapter 3, we focus on a specific component of a block cipher,
namely the S-box, which in a certain sense contains most of the security of the
cipher itself. We present some well known results on optimal ways to design this
component. In Chapter 4, we outline the differential attack in our setting. We
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split the interaction of our new operation with a block cipher in the interaction
with each component of it. The first one (namely, the key addition) gives us a
small disadvantage with respect to classical differential cryptanalysis; however,
we cannot act on it. The second one (the diffusion layer, which is given by an
invertible matrix) if not properly controlled will probably result in a total failure
of our whole attack. However, a diffusion layer which is linear also with respect
to our alternative sum gives us no disadvantage at all. Finally, the last compo-
nent, the confusion layer, can give us a great advantage. It is then clear that
our performance depends on the last two components. In Chapter 5, the heart
of our work, we extensively analyze the automorphism group of the radical ring
connected to our new sum. It turns out that this group contains almost all the
information regarding the interaction of our sum with the diffusion layer. We
firstly present some general results and then the most important ones, which
are due to [7] and [12]. Finally, we show how we are able to extend them in
new settings. These results are useful for trying to exploit attacks based on
alternative sums which have not been considered in [7] and [12]. In Chapter 6,
the last one, we present the interaction of our new sum with the confusion layer
(more precisely with the optimal S-boxes presented in Chapter 3) and how we
are able to outperform the classic XOR-based analysis.

4



Contents

1 Preliminary definitions 7
1.1 Alternative sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Boolean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Vectorial Boolean Functions . . . . . . . . . . . . . . . . . . . . . 17

2 Cryptosystems 25
2.1 Security of a cryptosystem . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Block Ciphers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Substitution-Permutation Networks and the AES . . . . . 28
2.3 Attacks overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Differential cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . 33

3 Classification of 4-bit permutations 35

4 Differential Cryptanalysis revised 39
4.1 Interaction with the key-addition layer . . . . . . . . . . . . . . . 40
4.2 Interaction with the confusion layer . . . . . . . . . . . . . . . . . 41
4.3 Interaction with the diffution layer . . . . . . . . . . . . . . . . . 43

5 Analysis of H◦ 45
5.1 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 The case d = n− 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 The case d = n− 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Parallel Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Two parallel sums . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 m parallel sums . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Analysis of Optimal 4-bit S-boxes 67

5



6



Chapter 1

Preliminary definitions

1.1 Alternative sums

In this work V = (F2)n (with n ≥ 2) will be a binary vector space. For a vector
v ∈ V , vj is the j-th component of v. The canonical basis will be denoted by
{ei} with eji = 1 if and only if i = j, otherwise eji = 0. Sym(V ) is the group of
all the permutations on V . GL(V ) ⊆ Sym(V ) is the general linear group on V ,
i.e. the group of all the linear permutations on V , while

T := {σa|a ∈ V, σa : x 7→ x+ a} ⊆ Sym(V )

is the group of all the translations on V . Finally, we define AGL(V ) := GL(V )n
T(V ), or the normalizer of T in Sym(V ), as the affine general linear group on V .
A more detailed presentation of these facts, together with some proofs omitted
here for brevity, can be found in [7] and [12]. Theorem 1.6 is due to [17].

Notation 1.1. We will use postfix notation for function evaluation, i.e. if
g ∈ Sym(V ) and v ∈ V we write vg to mean g(v).

Definition 1.2. An elementary abelian group is an abelian group in which every
nontrivial element has order a prime p.

Definition 1.3. The action of a group G on a set V is said to be transitive if
for all x, y ∈ V there exist g ∈ G such that y = xg.

Definition 1.4. A permutation group G acting transitively on a set V is said
to be regular if for all v ∈ V , Gv := {g ∈ G|vg = v} (the stabilizer of G at v)
is trivial.

Remark 1.5. If G is a regular group acting on a finite set V , then for all
x, y ∈ V there exists g ∈ G such that xg = y.

Theorem 1.6. Let T < Sym(V ) an elementary abelian regular subgroup. There
exists g ∈ Sym(V ) such that T = Tg = g−1 T g.

Remark 1.7. In this setting, it is possible to represent T = {τa|a ∈ V } where
τa is the unique map in T sending 0 to a.
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Definition 1.8. Let T < Sym(V ) be an elementary abelian regular subgroup.
We can define an additive law ◦ on V by letting for each a, b in V

a ◦ b := aτb,

where τb is the unique element of T sending 0 to b.
Proposition 1.9. Let T < Sym(V ) be an elementary abelian regular subgroup,
and ◦ be the operation related to it as in Definition 1.8. Then, (V, ◦) is a
vector space over F2, with associated translation group T◦ = T. Moreover,
(V, ◦) ∼= (V,+).
Proof. First of all, let us prove that (V, ◦) is an abelian group. By definition,

a ◦ (b ◦ c) = 0τa(τbτc) = 0(τaτb)τc.

0 is clearly the neutral element. Moreover, since T is elementary aτa = 0 for each
a. Finally, since T is an abelian group, for each a, b ∈ V we have τaτb = τbτa.
As a consequence it holds

a ◦ b = 0τaτb = 0τbτa = b ◦ a.

This also proves that (V, ◦) is a vector space over F2, and since |V | <∞, (V, ◦)
and (V,+) are isomorphic vector spaces.

Definition 1.10. Let T < Sym(V ) be an elementary abelian regular subgroup,
◦ the operation defined by it and T◦ the associated translation group. We denote
by AGL(V, ◦) = AGL(V )g the normalizer of T◦ and by GL(V, ◦) the stabilizer
of {0} in AGL(V, ◦). For sake of clarity, we will sometimes denote T as T+ ,
AGL(V ) by AGL(V,+) and GL(V ) by GL(V,+).
Definition 1.11. Given an operation ◦ as above, a vector k ∈ V is called a
weak key if for each x ∈ V it holds x+ k = x ◦ k. The set

W◦ := {k|k ∈ V, k is a weak key}

is called the weak-keys space, and is a subspsace of both (V,+) and (V, ◦). Here-
after dim(W◦) will be denoted by d.
Definition 1.12. Given an operation ◦ as above, we can introduce a dot product
on V defined for each a, b ∈ V by

a · b := a+ b+ a ◦ b.

The set of elements that can be expressed as dot prouct is deonte by

U◦ := {x · y|x, y ∈ V }

and is called set of errors.
Definition 1.13. Given an operation ◦ as above, we define

H◦ = GL(V,+) ∩GL(V, ◦).
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A matrix λ ∈ (F2)n×n is said to be compatible with ◦ if λ ∈ H◦.

1.2 Boolean Functions

We now give a brief introduction to Boolean functions, a kind of function we
will use extensively in the next chapters. A more detailed presentation of these
facts, together with some proofs omitted here for brevity, can be found in [11].

Definition 1.14. A Boolean function in n variables is f : F n2 → F2. We also
define Bn = {f : F n2 → F2} the set of all Boolean functions.

Remark 1.15. |Bn| = |F2||F
n
2 | = 22n .

Definition 1.16. Given F n2 = {v0, ..., v2n−1}, we define the evaluation map
ev : Bn → F 2n

2 given by

f 7→ (f(v0), ..., f(v2n−1)).

The vector f = ev(f) is called the truth table of f .

Definition 1.17. Let [n] := {1, ..., n}, and S ⊆ [n]. The monomial

xS =
∏
i∈S

xi ∈ F2[x1, ..., xn]

is called square-free. A polynomial p ∈ F2[x1, . . . , xn] is called square-free if it
is composed only by square-free monomials. By definition x∅ = 1.

Remark 1.18. Square-free polynomials can also be seen as elements of

F2[x1, ..., xn]
/

(x2
i + xi) .

Definition 1.19. We denote by Rn the space of square-free polynomials in n
variables. Notice that this is a vector space with basis

L =
{
xI : I ⊆ [n]

}
.

Theorem 1.20 (Algebraic Normal Form). Every Boolean function can be uniquely
represented as a square-free polynomial

f(x1, ..., xn) =
∑
I⊆[n]

aIx
I , aI ∈ F2.

This representation is called Algebraic Normal Form (ANF).

Proof. Let p ∈ F2[x1, ..., xn] square-free. We can map

p 7→ fp ∈ Bn
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given by fp(v) = p(v). Notice that |Rn| = |Bn| = 22n . Now we want to show
that for two square-free polynomials p1 6= p2 we have fp1 6= fp2 . We have

p1 =
∑
I⊆[n]

aIx
I

and
p2 =

∑
I⊆[n]

bIx
I .

Let us assume fp1 = fp2 . We get fp1 − fp2 = 0 or equivalently p1(v)− p2(v) = 0
for each v ∈ F n2 . We call the difference F := p1 − p2. We know that f is also
square-free, and so we can write

F =
∑
I⊆[n]

cIx
I ,

with cI = aI − bI . But F (v) = 0 for all v, hence F (0) = c∅ = 0. From the
coefficient of ∅ we easily get all the degree one coefficients, since F (ei) = c∅ +
c{i} = 0, and so on. We have proven that F = 0 and consequently p1 = p2.

Definition 1.21. We define the support of a vector v as

supp(v) := {i : vi 6= 0} .

Proposition 1.22. Let f ∈ Bn. The coefficients aI defined in Theorem 1.20
for f can be computed as

aI =
∑
v∈Fn2

supp(v)⊆I

f(v).

Proof. Let
bI =

∑
v∈Fn2

supp(v)⊆I

f(v)

and
g(x) =

∑
I⊆[n]

bIx
I

be a square-free polynomial. By Theorem 1.20 it is enough to prove that g(w) =
f(w) for each w ∈ F n2 . We have

g(w) =
∑

I⊆supp(w)

∑
v∈Fn2

supp(v)⊆I

f(v) =
∑
v∈Fn2

f(v)
∑
I⊆[n]

supp(v)⊆I⊆supp(w)

1

If supp(v) 6⊆ supp(w) the last sum is 0. Otherwise

| {I ⊆ [n] : supp(v) ⊆ I ⊆ (supp(w)} | = 2|supp(v)|−|supp(w)|

and the one and only possibility for the sum not to vanish is |supp(v)| −
|supp(w)| = 0 or v = w. This implies g(w) = f(w) for each w ∈ F n2 .
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Example 1.23. Let us fix n = 3 and let f : F 3
2 → F2 be a Boolean function

with truth table

x1 x2 x3 hex f(x)
0 0 0 0x 0
0 0 1 1x 0
0 1 0 2x 0
0 1 1 3x 1
1 0 0 4x 1
1 0 1 5x 1
1 1 0 6x 0
1 1 1 7x 1

where each vector is associated with its hexadecimal representation, most signif-
icant bit first. We have a∅ = f(0x) = 0, since 0x is the only vector with empty
support. For higher degrees, we have for example a1 = f(0x) + f(1x) = 1,
a12 = f(000) + f(100) + f(010) + f(110) = 1 and so on. We obtain the ANF
for f as

f(x) = x1 + x1x2 + x2x3.

Definition 1.24. Let f ∈ Bn. We define the weight of f as

w(f) = | {v ∈ F n2 : f(v) = 1} |,

w(f) can also be seen as the Hamming weight for the vector f .

Definition 1.25. A function f ∈ Bn is called balanced if w(f) = 2n−1. Notice
that in this case we have the same number of 0 and 1 as outcome.

Definition 1.26. Let f ∈ Bn with algebraic normal form

f(x) =
∑
I⊆[n]

aIx
I .

We define the algebraic degree of f as

degA(f) = max {|I| : aI 6= 0} .

If degA(f) ≤ 1 we will call f an affine Boolean function, and we can write
f(x) = a0 + a1x1 + ...+ anxn. The set of all affine functions in Bn is denoted
by An.

Remark 1.27. For I ⊆ [n], it holds w(xI) = 2n−|I|. In fact we have

xI(v) =
{

0 if I 6⊆ supp(v)
1 if I ⊆ supp(v).

We also notice that w(xI) is odd ⇐⇒ I = [n].

Proposition 1.28. w(f) is odd ⇐⇒ degA(f) = n.
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Proof. First of all, notice that

w(f + g) = w(f) + w(g)− 2 |{v : f(v) = g(v) = 1}| ,

since on those elements the sum vanishes. Hence if w(f) and w(g) have the
same parity w(g + f) will be even, otherwise it will be odd. We know that
f ∈ Bn is a sum of monomial of the form xI . Moreover, thanks to Observation
1.27, if degA(f) < n the sum is over elements with even weight and than also
f will have even weight. Otherwise we may write

f(x) = x1 · · ·xn + g(x)

with degA(g) < n, and since g has even weight and x1 · · ·xn has odd weight
w(f) will be odd.

Definition 1.29. Let f, g ∈ Bn. We define the distance between f and g as

d(f, g) := | {v : f(v) 6= g(v)} |.

Remark 1.30. d(f, g) = w(f + g).
Definition 1.31. Let An = {g : degA(g) ≤ 1} be the set of all affine functions.
The non-linearity of a Boolean function f ∈ Bn is given by

NL(f) := d(f,An) = min
g∈An

d(f, g),

i.e. the distance of f from the closest affine function.
For some applications, better explained in the next chapters, we are inter-

ested in Boolean functions with high nonlinearity.
Definition 1.32. We define the Fourier transform of f in a as

Ff (a) =
∑
x∈Fn2

f(x)(−1)a·x.

Moreover, we define the Walsh transform of f in a as

Wf (a) =
∑
x∈Fn2

(−1)f(x)+a·x = F(−1)f(·)(a).

Remark 1.33. It holds

Wf (a) = 2nδ0(a)− 2Ff (a)

where

δ0(a) =
{

1 if a = 0
0 otherwise

Proof.

Wf (a) + 2Ff (a) =
∑
x∈Fn2

(−1)f(x)+a·x + 2
∑
x∈Fn2

f(x)(−1)a·x. (1.1)
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Let now a = 0. Then

(1.1) =
∑
x∈Fn2

(−1)f(x) + 2
∑
x∈Fn2

f(x) =

= | {x : f(x) = 0} | − | {x : f(x) = 1} |+ 2| {x : f(x) = 1} | =
= | {x : f(x) = 0} |+ | {x : f(x) = 1} | = 2n,

because we are counting over all F2. This proves the equality if when a = 0.
If a 6= 0 instead we have

(1.1) =
∑
x∈Fn2

(−1)a·x[2f(x) + (−1)f(x)] =
∑
x∈Fn2

(−1)a·x =

= | {x : a · x = 0} | − | {x : a · x = 1} | = 0,
(1.2)

since we can se a · x as a balanced function and hence the two sets have the
same cardinality.

Remark 1.34. As a consequence we have

w(f) = Ff (0) = 2n−1 − 1
2Wf (0) = d(f, 0).

Moreover, if we denote by la(x) = a · x, it holds

d(f, la) = w(f + la) = 2n−1 − 1
2Wf+la(0) =

2n−1 − 1
2
∑
x∈Fn2

(−1)f(x)+la = 2n−1 − 1
2Wf (a).

Finally, d(f, la + 1) = 2n−1 + 1
2Wf (a).

Proposition 1.35. It holds NL(f) = 2n−1 − 1
2 max
a∈Fn2

|Wf (a)|.

Proof. It follows directly from Remark 1.34.

Lemma 1.36 (Parseval). We have∑
a∈Fn2

W2
f (a) = 22n.

Proof.

∑
a∈Fn2

∑
x∈Fn2

(−1)f(x)+a·x

2

=
∑
a∈Fn2

∑
x,y∈Fn2

(−1)f(x)+f(y)+a·(x+y) =

∑
x,y∈Fn2

(−1)f(x)+f(y) ·
∑
a∈Fn2

(−1)a·(x+y).

Now if x 6= y like above lx+y(v) = (x + y) · v is a balanced function and this
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implies ∑
a∈Fn2

(−1)a·(x+y) = 0.

If instead x+ y = 0 we have ∑
a∈Fn2

(−1)a·(x+y) = 2n.

But then ∑
x,y∈Fn2

(−1)f(x)+f(y) ·
∑
a∈Fn2

(−1)a·(x+y) =
∑
x∈Fn2

2n = 22n.

Proposition 1.37. It holds

NL(f) ≤ 2n−1 − 2
n
2−1.

Proof. From Lemma 1.36 we obtain that

max
a∈Fn2

|Wf (a)| ≥ 2
n
2

and hence, thanks to Proposition 1.35

NL(f) = 2n−1 − 1
2 max
a∈Fn2

|Wf (a)| = 2n−1 − 2
n
2−1.

Definition 1.38. If NL(f) = 2n−1 − 2n2−1 then f is called bent.

Remark 1.39. If f is bent then

{Wf (a) : a ∈ F n2 } =
{
±2

n
2
}
.

Since Wf (a) ∈ Z must be an integer bent functions only exists for even values
of n.

Example 1.40. Let n = 2, f(x) = x1x2 is bent. We have NL(f) ≥ 1 since
NL(f) = 0 would imply f affine but we know that degA(f) = 2 since f(11) = 1.
Moreover d(f, 0) = 1 = NL(f). But we have

2n−1 − 2
n
2−1 = 22−1 − 1

221 = 1

and hence f is bent.

Definition 1.41. Let f ∈ Bn bent. We define the dual boolean function of f
to be the function f̃ such that

Wf (a)
2n2

= (−1)f̃(a).

14



Notice that this is well defined since for f bent the left product is always ±1.

Proposition 1.42. If f is bent then also f̃ is bent. Moreover ˜̃f = f .

Proof.

W
f̃
(a) =

∑
x∈Fn2

(−1)f̃(x)+a·x =

∑
x∈Fn2

(−1)a·xWf (x)
2n/2

= 1
2n/2

∑
x∈Fn2

(−1)a·x
∑
y∈Fn2

(−1)f(y)+x·y =

= 1
2n/2

∑
y∈Fn2

(−1)f(y) ∑
x∈Fn2

(−1)(a+y)·x.

(1.3)

Like above, in the second summation we get 2n if a + y = 0 and 0 otherwise.
From that follows

(1.3) = 2n
2n/2

(−1)f(a) = (−1)f(a)2n/2,

and hence f̃ is bent. It is then clear from the definition that ˜̃f = f .

Definition 1.43. The derivative of f with direction a is

Da f(x) = f(x+ a) + f(x).

Proposition 1.44. f ∈ Bn is bent ⇐⇒ ∀a 6= 0, Da f is balanced.

Proposition 1.45. Let ϕ : F n2 → R. Such a function is called pseudo-boolean.
Let us consider its Fourier transform

Fϕ(a) =
∑
x∈Fn2

ϕ(x)(−1)a·x.

Let E < F n2 a subspace, with dim(E) = K. Then∑
x∈E

Fϕ(x) = 2k
∑
x∈E⊥

ϕ(x).

Proof. Given l a linear boolean function such that l
∣∣
E
6= 0, then l

∣∣
E
is balanced.

Let us define Hl = {v ∈ F n2 : l(v) = 0} an hyperplane. It holds dim(Hl) = n−1.
Since l

∣∣
E
6= 0, we have dim(Hl ∩ E) = k − 1. Then it holds∑
x∈E

Fϕ(x) =
∑
x∈E

∑
y∈Fn2

ϕ(y)(−1)y·x =
∑
y∈Fn2

ϕ(y)
∑
x∈E

(−1)ly(x).

If y ∈ E⊥ then ly(x) = 0 for all x ∈ E, otherwise ly
∣∣
E
is balanced. The sum is

then 2k ∑
y∈E⊥

ϕ(y) as desired.

Theorem 1.46. Let f ∈ Bn bent. Then degA(f) ≤ n
2 .
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Proof. f(x) = ∑
I⊆[n]

aIx
I , where

aI =
∑
x∈Fn2

supp(x)⊆I

f(x).

We can see f as a pseudo-boolean function. We now want to show that∑
x∈Fn2

supp(x)⊆I

f(x) = 2|I|−1 − 2
n
2−1 + 2|I|−

n
2

∑
x∈Fn2

supp(x)⊆IC

f̃(x).
(1.4)

Let us define ϕ(x) = 1− 2f(x) = (−1)f(x). Thanks to Proposition 1.45∑
x∈Fn2

supp(x)⊆IC

Fϕ(x) = 2|IC |
∑

supp(x)⊆I
. (1.5)

Moreover by definition

Fϕ(x) =
∑
y∈Fn2

(−1)f(x)+x·y =

Wf (x) = 2n/2(−1)f̃(x) = 2n/2(1− 2f̃(x)).
(1.6)

Rewriting (1.5) we obtain∑
supp(x)⊆I

ϕ(x) = 2
n
2−|I

C | ∑
supp(x)⊆IC

(1− 2f̃(x))⇒

∑
supp(x)⊆I

ϕ(x) = 2|I| − 2
∑

supp(x)⊆I
f(x) = 2

n
2 − 2

n
2−|I

C |+1 ∑
supp(x)⊆IC

f̃(x)⇒

2|I|−1 − 2
n
2−1 + 2|I|−

n
2

∑
supp(x)⊆IC

f̃(x) =
∑

supp(x)⊆I
f(x)

Taking the last sum mod 2 we obtain the coefficient aI . Let us suppose that
|I| > n/2. Then the sum in (1.4) is even, and that implies aI = 0. We than
have degA(f) ≤ n

2 .

Definition 1.47. We say that f, g ∈ Bn are affine equivalent (we denote it by
f ∼A g) if there exists L : F n2 → F n2 linear permutation, b ∈ F n2 and ε ∈ F2 such
that

g(x) = f(L(x) + b) + ε.

This is clearly an equivalence relation.

Proposition 1.48. Let f ∼A g ∈ Bn. Then,

1. {|Wf (a)|} = {|Wg(a)|}; in particular NL(f) = NL(g) and hence f is bent
if and only if g is;

2. degA(f) = degA(g);
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3. if ε = 0 then w(f) = w(g), otherwise w(f) = 2n − w(g).

Proof. (1) Let g(x) = f(L(x) + b) + ε. We have

Wg(a) =∑
x∈Fn2

(−1)f(L(x)+b)+ε+a·x (x 7→L−1(x)+L−1(b))=

∑
x∈Fn2

(−1)f(x)+ε+a·L−1(x)+a·L−1(b) =

(−1)ε+a·L−1(b) ∑
x∈Fn2

(−1)f(x)+a′·x

(1.7)

where a′ = L−1∗(a), and L−1∗ is the adjunct operator of L−1, such that

x · L−1(y) = L−1∗(x) · y

∀x, y. It follows
(1.7) = (−1)ε+a·L−1(b)Wf (a′),

and, since both inverse and adjunct are bijective we obtain {|Wf (a)|} = {|Wg(a)|}.
(3) is clear from definition, while the proof of (2) is out of the scope of this
work.

1.3 Vectorial Boolean Functions

Definition 1.49. F : F n2 → Fm2 is called an (n,m)-vectorial Boolean function.

Through this section, if not stated otherwise, we will assume F : F n2 → Fm2 .

Remark 1.50. We can also write F = (f1, ..., fm) where the fi : F n2 → F2 are
called coordinate functions.

Definition 1.51. Let F : F n2 → Fm2 . For all v ∈ Fm2 \ {0} we can define the
Boolean function

v · F (x) =
m∑
i=1

vifi(x).

v · F is called component of F .

Definition 1.52 (Algebraic Normal Form). Like we did for the scalar case we
can define the algebraic normal form for F as

F (x) =
∑
I⊆[n]

aIx
I ,

with aI = (a(1)
I , ..., a

(m)
I ) ∈ Fm2 . In this notation

Fi(x) =
∑
I⊆[n]

a
(i)
I x

I .
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Remark 1.53. Again like in the scalar case, it holds

aI =
∑
x∈Fn2

supp(x)⊆I

F (x).

Definition 1.54. Let
F =

∑
I⊆[n]

aIx
I

be the algebraic normal form of F . We define the algebraic degree of F as
degA(F ) = max

i
degA(fi).

Remark 1.55. Notice that if F is an (n,n)-function we can see it as F : F2n →
F2n .

Theorem 1.56. Let q ∈ N and F : Fq → Fq. Then there exists a unique P
∈ Fq[X] such that deg(P ) < q and F (v) = P (v) on Fq. In particular, this means
that any F : F2n → F2n can be represented as a polynomial of degree at most
2n − 1.

Proof. Let Fq =
{
0, 1 = αq−1, α, ..., αq−2} = {a0, ..., aq−1} where α is a primitive

element. We have F (0) = F (a0) = b0 and F (ai) = bi. Then, by Lagrange
interpolation, we obtain the polynomial

P (x) =
q−1∑
i=0

bi

q−i∏
j=0
j 6=i

x− aj
ai − aj

.

Proposition 1.57. Let F : F2n → F2n. We may write F as

F (x) =
2n−1∑
i=0

aix
i.

Then it holds degA(F ) = max {w(i) : ai 6= 0}, where w(i) is the Hamming
weight of the binary vector associated with the integer i.

Definition 1.58. F : F n2 → Fm2 is said to be balanced if for all u ∈ Fm2 it holds
|F−1(u)| = 2n−m.

Proposition 1.59. F is balanced ⇐⇒ v · F is balanced ∀v ∈ Fm2 , v 6= 0.

Corollary 1.60. F : F n2 → F n2 is balanced ⇐⇒ it is bijective (or equivalently
a permutation).

Definition 1.61. We define the non-linearity of a vectorial Boolean function
F as

NL(F ) = min
v∈Fn2 \{0}

NL(v · F ).
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Definition 1.62. The Walsh coefficient of F computed in a ∈ F n2 and b ∈ Fm2
is given by

WF (a, b) =
∑
x∈Fn2

(−1)a·x+b·F (x).

Remark 1.63. We also have WF (a, b) = Wb·F (a).

Proposition 1.64. Like for the scalar case it holds

NL(F ) = 2n−1 − max
a∈Fn2

06=b∈Fm2

|Wf (a, b)|
2 ≤ 2n−1 − 2

n
2−1.

Definition 1.65. F is called bent if the above bound is attained, i.e.

NL(F ) = 2n−1 − 2
n
2−1.

Definition 1.66. We can define again the derivative of F with direction a as

DaF (X) := F (x+ a) + F (x)

Remark 1.67. It holds Da(v · F )(x) = v ·DaF .

Proposition 1.68. F is bent ⇐⇒ v · F is bent ∀v ∈ Fm2 , v 6= 0.

Corollary 1.69. Like in the scalar case F is bent ⇐⇒ DaF (X) is balanced
∀a 6= 0.

Proof. It holds

Da(v · F )(x) = v · F (x+ a) + v · F (x) = v · (F (x+ a) + F (x)) = v ·Da.F.

The result the follows from the scalar case applied to each component.

Theorem 1.70. F bent ⇒ m ≤ n
2 .

Proof. If F is bent then v · F is bent for all v ∈ Fm2 , v 6= 0. v · F bent implies
that also ṽ · F is bent. Then by definition we have

WF (y, v) = Wv·F (y) = 2n/2(−1)ṽ·F (y).

Let us observe that for all (n,m)-function it holds, for fixed u,

1
2m

∑
x∈Fn2
v∈Fm2

(−1)v·(F (x)+u) = 1
2m

 ∑
x∈Fn2
F (x)=u

∑
v∈Fm2

(−1)v·0 +
∑
x∈Fn2
F (x)6=u

(−1)v·(F (x)+u)

 .
The last sum is 0 since the exponent is balanced, while the first is |F−1(u)|2m
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and so in the end we get |F−1(u)|. We then have

|F−1(u)| = 2−m
∑
v∈Fm2

(−1)v·u
∑
x∈Fn2

(−1)v·F (x) = 2−m
∑
v∈Fm2

(−1)v·uWf (0, v) =

= 2
n
2−m

∑
0 6=v∈Fm2

(−1)v·u+ṽ∈F (0) + 2n−m

since when v 6= 0 Wf (0, v) = 2n/2(−1)ṽ·F (0), and the last term takes into
account the case v = 0. Then let N = ∑

06=v∈Fm2
(−1)v·u+ṽ·F (0). N is odd since we

are summing ±1 2n− 1 times. Since |F−1(u)| must be an integer then 2n2−m is
an integer and this implies n

2 ≥ m.

Theorem 1.71 (Sidenilkov-Chabaud-Vadenay Bound). Let m ≥ n− 1. Then,

NL(F ) ≤ 2n−1 − 1
2

√
3 · 2n − 2− 2(2n − 1)(2n−1 − 1)

2m − 1 .

In particular, if n = m it holds

NL(F ) ≤ 2n−1 − 2
n−1

2 .

Proof. Notice that if we have k1, ..., kr ≥ 0 it holds max
i
ki ≥

∑
k2
i∑
ki
.

NL(F ) = 2n−1 − 1
2 max

a∈Fn2
06=b∈Fm2

|WF (a, b)|,

and this implies

max
a∈Fn2

06=b∈Fm2

|W2
F (a, b)| ≥

∑
W4
F (a, b)∑

W2
F (a, b) .

Thanks to Lemma 1.36 we notice that ∀b ∈ Fm2 it holds∑
a∈Fn2

W2
F (a, b) = 22n (1.8)

since if b 6= 0 then ∑
a∈Fn2

W2
F (a, b) = ∑

a
W2
b·F (a) = 22n and the case b = 0 can be
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directly computed. Moreover∑
a,b

W4
F (a, b) =

=
∑
a,b

∑
x∈Fn2

(−1)b·F (x)+a·x

∑
y∈Fn2

(−1)b·F (y)+a·y

 ·
·

∑
z∈Fn2

(−1)b·F (z)+a·z

∑
t∈Fn2

(−1)b·F (t)+a·t

 =

=
∑

x,y,z,t∈Fn2

∑
b∈Fm2

(−1)b·(F (x)+F (y)+F (z)+F (t))

∑
a∈Fn2

(−1)a·(x+y+z+t)

 .

(1.9)

If F (x) +F (y) +F (z) +F (t) 6= 0 the second sum is 0, otherwise 2m. The same
holds for the third one with x+ y + z + t. We then have

(1.9) = 2n+m|{(x, y, z, t) ∈ F 4n
2 : x+ y + z + t = 0,

F (x) + F (y) + F (z) + F (t) = 0}| =
= 2n+m |{(x, y, z) : F (x) + F (y) + F (z) + F (x+ y + z) = 0}| ≥

≥ 2n+m |{(x, y, z) : x = y o x = z o y = z}| =
2n+m3 |{(x, x, y) : x, y ∈ F n2 }| − 2 |{(x, x, x) : x ∈ F n2 }| =

= 2n+m(22n3− 2n2).

But then
max
a∈Fn2
b∈ Fm2

W2
F (a, b) ≥ 2n+m(22n3− 2n2)− 24n

(2m − 1)22n =

= 2n3− 2− 2(2n − 1)(2n−1 − 1)
2m − 1 ,

where 24n comes from the case b = 0, and the denominator from (1.8).

Definition 1.72. Let F : F n2 → F n2 . If the SCV bound is attained, i.e.

NL(F ) = 2n−1 − 2
n−1

2 ,

F is called Almost Bent (AB).

Remark 1.73. There extist AB functions for odd values of n.

Proposition 1.74. Let F : F n2 → F n2 an almost bent function. Then it holds

degA(F ) ≤ n+ 1
2 .

Proof. Let us assume that there exist b 6= 0 such that d = degA(b · F ) > n+1
2 .

Then in the algebraic normal form of b · F we will have a monomial xI where
|I| = d. We may suppose, up to index permutation, that I = {1, ..., d}, and
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xI = x1 · · ·xd. Let us call E = {u ∈ F n2 : ui = 0, i ∈ I}. Clearly dim(E) = n−d.
Then

b · F
∣∣
E⊥

=
∑
S⊆I

aSx
S + xI

where the aS are the coefficients of the algebraic normal form of b · F . But
E⊥ ∼= F d2 , and hence

w
∣∣
E⊥

(b · F
∣∣
E⊥

) = 2h+ 1

is odd. This implies∣∣∣{x ∈ E⊥ : b · F (x) = 0
}∣∣∣ = 2d − (2h+ 1).

But then ∑
a∈E

WbF (a) = 2n−d
∑
a∈E⊥

(−1)bF (a) (1.10)

thanks to Proposition 1.45 applied to the pseudo-boolean function (−1)bF . It
follows

(1.10) = 2n−d(2d − (2h+ 1)− (2h+ 1)) = 2n−d2(2d−1 − 2h− 1).

The content of the last parenthesis is odd, and hence 2n−d+1|
∑
a∈E

WF (a, b) and

2n−d+2 -
∑
a∈E

WF (a, b). But all the nonzero Walsh coefficients must be equal

to 2n+1
2 , and then for all k ≤ n+1

2 it holds 2k|WF (a, b). But now d > n+1
2

implies n− d+ 2 ≤ n+1
2 , which is absurd for what we just observed, and hence

d ≤ n+1
2 .

Definition 1.75. Let F : F n2 → Fm2 . We define

δF (a, b) = |{x : Da F (x) = b}|

and the differential uniformity of F

δ(F ) := max
a6=0
b∈Fm2

δF (a, b)

for 0 6= a ∈ F n2 , b ∈ Fm2 . F is called δ-uniform (or differentially δ-uniform)
where δ = δ(F ).
Remark 1.76. In general it holds 2n−m ≤ δF , since

2n =
∑

b∈Im(Da F )

∣∣∣Da F
−1(b)

∣∣∣ ≤ ∑
b∈Im(Da F )

δ(F ) ≤ δ(F )2m.

For n = m we obtain δ(F ) ≥ 1. However, this bound cannot be attained, since
if x is a solution for F (x+ a) +F (x) = b also x+ a does. So for m = n it holds
δ(F ) ≥ 2.
Definition 1.77. If δ(F ) = 2 we call F : F n2 → F n2 an Almost Perfect Nonlinear
(APN) function.
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Remark 1.78. Notice that for linear and affine F it holds

F (x+ a) + F (x) = F (x) + F (a) + F (x) = F (a).

which implies δ(F ) = 2n.

Definition 1.79. Two functions F,G : F n2 → F n2 are said to be affine equivalent
if there exist A1, A2 : F n2 → F n2 affine permutations such that

G(x) = A2 ◦ F ◦A1(x).

We denote this by F ∼A G, just like in the scalar case.

Proposition 1.80. For F ∼A G we have

1. degA(F ) = degA(G);

2. NL(F ) = NL(G), and in particular F is almost bent ⇐⇒ G is;

3. δ(F ) = δ(G), and in particular F is APN ⇐⇒ G is.

Proposition 1.81. Let F : F n2 → F n2 be an APN function. Then, it holds
NL(F ) > 0.

Proof. We may suppose, without loss of generality, F (0) = 0 since affine equiv-
alences does not change non linearity. Suppose by absurd that NL(F ) = 0.
Then, there exists v 6= 0 such that vF is linear. Up to a basis change, let
v = e1. We then have F = (f1, ..., fn) with f1 linear, and DaF (x) = (f1(a), y)
with f1(a) constant. This implies

ImDaF =
{

(f1(a), y) : y ∈ F n−1
2

}
.

Let us now consider F ′ = (f2, ..., fn). We know that ImDaF
′ = F n−1

2 , and since
each vector in the image of DaF is in correspondence with either 2 or 0 elements
of the preimage (since F is APN) we have

∣∣(DaF
′)−1(b)

∣∣ = 2 for all b ∈ F n−1
2 .

This implies that DaF
′ is balanced for all a 6= 0 and hence F ′ is bent. But this

is absurd, since bent functions goes from F n2 → Fm2 with m ≤ n
2 .

23



24



Chapter 2

Cryptosystems

2.1 Security of a cryptosystem

Cryptography is the discipline which studies and designs ciphers that enable
two parties to communicate in the presence of an eavesdropper that can monitor
all communication between them. In the private key setting, the one we will
consider in this work, the ciphers rely on the assumption that the two parties
are able to share in advance a secret key, unknown to the eavesdropper. Then
one party can encrypt the message, also called plaintext, using the secret key,
thus obtaining an obfuscated message called ciphertext that is transmitted to
the receiver. The receiver uses the same key to decrypt the ciphertext and
obtain the message. On the other hand, the public key setting is used to study
communication that cannot rely on a previously shared secret key between the
parts, and hence must be protected in a different ways. Public key encryption
is often used in order to share, through an insecure channel, the secret private
key. We will now provide some formal definitions.

Definition 2.1. A cryptosystem is a quintuple (P,C,K,E,D) of finite sets such
that for all k ∈ K there exist ck ∈ E, ck : P → C and dk ∈ D, dk : C → P such
that dk ◦ ck(p) = p for every p ∈ P.
E is the set of encryption functions, D the set of decryption functions, P is the
set of plaintexts, C the set of ciphertexts, and K the key space.

In the design of a cryptosystem it is assumed that the only information not
known by the eavesdropper is the secret key used by the two parties: a key, if
discovered, is easier to change than designing a whole new cryptosystem. This
is known as Kerckhoffs’ principle. Informally, a cryptographic system is called
computationally secure if the best possible algorithm for breaking it requires N
operations, where N is large enough to be infeasible in reasonable time. How-
ever, under this definition no actual system can be proved secure, since we never
know whether there is a better algorithm than the ones known. Hence, in prac-
tice we say a system is computationally secure if the best known algorithm for
breaking it requires an unreasonably large amount of computational resources.
Of course in this setting a cryptosystem can only be considered secure against
an adversary whose computational resources are bounded. A system is said to
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be unconditionally secure (or information-theoretically secure) when we place
no limit on the computational power of the adversary.
Let us put a distribution probability on P,C and K. We will denote all of them
by P with an abuse of notation. Denoting by X a random variable for plaintext,
Y for ciphertext and K for the key, we assume P(X = x) > 0 for all x ∈ P and
P(K = k) > 0 for all k ∈ K.

Definition 2.2 (Perfect secrecy). A cryptosystem is said to have perfect secrecy
if P(X = x|Y = y) = P(X = x).

Lemma 2.3. Let P(Y = y) > 0, if (P,C,K,E,D) has perfect secrecy, then for
all x ∈ P and for all y ∈ C there exists k ∈ K such that ck(x) = y. Moreover,
|K| ≥ |P|.

Proof. Since the cryptosystem has perfect secrecy, it holds P(x|y) = P(x) and
then for Bayes Theorem P(y|x) = P(y). Let us fix x ∈ P and y ∈ C. Then
there exists k ∈ K such that ek(x) = y, otherwise for Bayes Theorem again we
would have P(y) = P(y|x) = 0 and this is a contradiction.
For the second part, let us fix x ∈ P. For all y ∈ C there exists k ∈ K such that
ek(x) = y. But then C = {ek(x) : k ∈ K} and this implies |K| ≥ |C|. But ek is
injective, since it has left inverse dk, and hence |C| ≥ |P|.

Theorem 2.4 (Shannon). Let |P| = |C| = |K|. A cryptosystem (P,C,K,E,D)
has perfect secrecy if and only if

1. ∀k ∈ K, P(k) = 1
|K| (i.e. all keys have the same probability)

2. ∀(x, y) ∈ P× C ∃!k ∈ K such that ck(x) = y.

Proof. (⇒) Let us start by proving point (2). Thanks to Lemma 2.3 we know
that there exists such a k. Its uniqueness follows from the fact that |K| = |P| =
|C|. We can now move to condition (1). Let us fix x ∈ P and y ∈ C. From
condition (2) there exists a unique kx,y such that ek(x) = y. Since y is fixed we
have P(y) = P(y|x) = P(kx,y), for the uniqueness of k. If we consider x 6= x′

then there will exist two unique elements k 6= k′ such that ek(x) = ek′(x′). But
then P(k) = P(y) = P(k′) and hence P(k) = 1

|K| .
(⇐) Let us fix y ∈ C. Then for all x ∈ P there exists a unique k such that
ek(x) = y. But then we may write P = {dk(y) : k ∈ K}, K = {k : y ∈ ek(P)}
and

P(Y = y) =
∑
k∈K

P(K = k)P(dk(y)) =
∑
k∈K

1
|K|

P(dk(y)) =

= 1
|K|

∑
x∈P

P(x) = 1
|K|

.

But then from condition (2) we have that for all x ∈ P, y ∈ C it holds P(y|x) =
P(k) = 1

|K| = P(y). Bayes theorem than implies P(x|y) = P(x) and this
concludes the proof.

Example 2.5 (One Time Pad). Let m ≥ 1, P = C = K = Fm2 . We can
define for each k ∈ K ck(x) = x ⊕ k and dk(y) = y ⊕ k (where ⊕ denotes the
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usual bitwise XOR). This cryptosystem is called One Time Pad. If the keys
are equally probable, the OTP is able to achieve theoretical perfect secrecy.
However, it has many problems in practice. First of all, we are forced to use
keys that are as long as the message; key distribution hence can become a
serious problem. Moreover, the same key cannot be used twice. Let’s see how.
Suppose that we have two parts, Alice and Bob, who want to communicate each
other, and an eavesdropper Eve who tries to understand what they are saying.
If Eve is able to obtain a pair (m, c) of plaintext and ciphertext then she can
easily compute the key, since k = m ⊕ c. If the key is reused, it is enough for
Eve to perform this attack (called known-plaintext attack) once to have the key
for all the messages. Even if Eve can only have access to different ciphertext c1
and c2 encrypted with the same key she can determine some partial information
on the messages m1 and m2 since

c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2.

2.2 Block Ciphers

One of the most common symmetric cryptosystems that are used in modern
cryptography are block ciphers. Block ciphers are so called because they act on
block of fixed length. The message, generally represented by a binary string,
is first split into substrings m1, ...,ml each of length n. Each block, seen as an
element of (F2)n, is then encrypted by a function ϕk which depends on a secret
key k. Using the above notation, we can give a formal definition of a block
cipher.

Definition 2.6. An algebraic block cipher is a cryptosystem (P,C,K,E,D) such
that

• P := C := (F2)n;

• K = (F2)l;

• E := {ϕk|k ∈ K} ⊆ Sym((F2)n);

• D :=
{
ϕ−1
k |ϕk ∈ E

}
The space of plaintext and ciphertext is usually denoted by V . We may also
define a function

ϕ : K× V → V

such that ϕ(k, x) = ϕk(x); the definition block cipher is sometimes referred to
this function.

Definition 2.7. A block cipher (P,C,K,E,D) is an iterated block cipher if each
ϕk is given by the composition of ϕψ(k,0), ..., ϕψ(k,r), with r fixed, where

• r ≥ 1; each ϕψ(k,i) is called round or round function and hence r + 1 is
the number of rounds
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• ψ : (F2)l × {0, ..., r} → (F2)n is called the key scheduling function; k is
called master key while ψ(k, h) is the h-th round key;

• ∀h ∈ {0, ..., r} it holds ϕψ(k,h) ∈ Sym((F2)n)

From now on, with block cipher we will always mean iterated block cipher.

m1 m2 m3 m4 m5

m

Block
Cipher

Encryption

Block
Cipher

Encryption

Block
Cipher

Encryption

Block
Cipher

Encryption

Block
Cipher

Encryption

c1 c2 c3 c4 c5

k k

 
 
k
 
 

k k

Figure 2.1: Generic scheme of a Block Cipher

A block cipher must behave like a random permutation. The space of pos-
sible permutations on n-bit strings is 2n!; it is then infeasible to represent them
all. The real challenge when designing a cipher is construct a set of permu-
tations with a concise description (namely, a short key) that behaves like a
random permutation. In particular, just as evaluating a random permutation
at two inputs that differ in only a single bit should yield two (almost) inde-
pendent outputs, so too changing one bit of the input to a block cipher should
yield an (almost) independent result. This implies that a one-bit change in the
input should in some way affect every bit of the output.
In addition to his work on perfect secrecy, Shannon ([26]) also introduced a ba-
sic paradigm to achieve this goal. It is called the confusion-diffusion paradigm.
Confusion means that each bit of the ciphertext should depend on several parts
of the key. This property helps to hide the relationship between the ciphertext
and the key. Diffusion means that if we change a single bit of the plaintext, then
about half of the bits in the ciphertext should change. Similarly, if we change
one bit of the ciphertext, then about half of the plaintext bits should change.
If a ciphertext is designed properly following these two principles, it should be
able to produce the desired effect, i.e. every bit of the output is affected by a
small change in the input. This is also known as avalanche effect.

2.2.1 Substitution-Permutation Networks and the AES

A Substitution-Permutation Network (SPN) can be viewed as a direct imple-
mentation of the confusion-diffusion paradigm. Its peculiarity is that round
functions are not chosen from the set of all possible permutations on some
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domain. Instead, the i− th round function can be written as

ϕi = γλσki

where

• γ ∈ Sym(V ) (called confusion layer) is a nonlinear transformation which
acts in parallel on smaller blocks of the message, made of j bits each (j
is usually 4 or 8); if m is the message

(m1, ...,mn)γ = ((m1, ...,mj)γ′, ..., (mn−j+1, ...,mn)γ′).

The map γ′ ∈ Sym(F j2) is often called S-box.

• λ ∈ Sym(V ) (called diffusion layer or mixing layer) is a linear map acting
on the whole message.

• σki : V → V, x 7→ x⊕ ki represents the key addition, where ⊕ is the usual
bitwise XOR. Here ki stands for ψ(k, i) for brevity.

As hinted by names, the aim of γ is to introduce confusion, while λ is responsible
for diffusion. An easy heuristic way to introduce avalanche effect is to ensure
that

• S-boxes are designed so that changing a single bit in the input of an S-box
changes at least two bits in its output.

• The mixing layer is designed so that the output bits of any S-box is used
to activate multiple S-boxes in the next round (an S-box is called active
if it takes in input a nonzero element).

• Sufficiently many rounds are used.

Anyway, the choice of S-boxes must be really careful in order to avoid exposition
to attacks. Moreover, if we want the avalanche effect to apply also to the inverse
cipher, we may need to increase further the number of rounds.
The most used SPN is the so called Advanced Encryption Standard, or AES

[16]. It is a cryptosystem selected by the United States National Institute of
Standards and Technology (NIST) after a four year competition in which the
best cryptographers and cryptanalysts from all over the world submitted a total
of 15 different algorithms [24]. Each team’s candidate cipher was intensively
analyzed by members of NIST, the public, and especially the other teams.
In October 2000, NIST announced that the winning algorithm was Rijndael
(from the name of its designers, Vincent Rijmen and Joan Daemen). The
process of selecting AES was ingenious because any group that submitted an
algorithm, and was therefore interested in having its algorithm adopted, had
strong motivation to find attacks on the other submissions. In this way, the
world’s best cryptanalysts focused their attention on finding even the slightest
weaknesses in the candidate ciphers submitted to the competition. After only
a few years each candidate algorithm was already subjected to intensive study,

29



Figure 2.2: Example of Substitution Permutation Network

thus increasing our confidence in the security of the winning algorithm.
Let us briefly outline AES functioning, to give a good example of a block cipher.
It is based on an array of bytes, called stated, which is seen as composed by
blocks of 4. The state is initially set equal to the input to the cipher, which is
128 bits (or 16 bytes). The following operations are then applied to the state
during each round:

1. Add Round Key: in every round, a 128-bit subkey is derived from the
key schedule algorithm and is XORed to the state;

2. Sub Bytes: each byte of the state array is replaced by another byte
according to a single fixed lookup table (the S-box) which is a bijection
over (F2)8;

3. Shift Rows: the state is now considered as a 4 by 4 square, and the bytes
of each row are cyclically shifted as follows: the first row is untouched,
the second one is shifted one place to the left, the third one is shifted two
places to the left and the fourth one three places to the left;
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4. Mix Columns: always looking at the state as a square, an invertible
linear transformation is applied to the four bytes of each column; this
transformation has the property that if two inputs differ in b > 0 bytes,
then applying the transformation yields two outputs differing in at least
5− b bytes.

In the final round, Mix Columns is replaced with Add Round Key because
the last round would be otherwise invertible and hence useless.
To date, there are no practical cryptanalytic attacks that are significantly better
than an exhaustive search for the key.

2.3 Attacks overview
Cryptanalysis is the science that studies cryptosystems, trying to identify weak-
nesses that could be exploited in an attack. The aim of the eavesdropper is to
be able to retrieve either a part or the entire plaintext from a given ciphertext,
some information about the key or even the key itself. Attack scenarios are
generally classified depending on the information available to the eavesdropper.
When talking about private key cryptosystems, and especially block ciphers,
the cipher design is fixed and publicly available thanks to the aforementioned
Kerckhoffs’ principle while the key is assumed to be secret. What is then left
to decide is the access to plaintext, ciphertext or pairs of related plaintext and
ciphertext. We can classify the most common attacks as follows, basing on this
discriminant.

• Ciphertext Only: the attacker can only observe some ciphertext, with-
out the associated plaintext. This information is generally easy to obtain;
however, a large sample of ciphertexts is needed to be able to decrypt the
message. The second attack we presented on the One Time Pad is an
example of ciphertext only attack.

• Known Plaintext: the attacker knows a certain amount of plaintext-
ciphertext pairs. In general it is assumed that available plaintext are
collected from a random sample. However, it is possible that they come
from a non random distribution, showing redundancy that can be helpful
in the decryption process. Sometimes the whole plaintext for a specific
ciphertext is not available, but the attacker have some information about
it. This happened for example in the famous Enigma decryption during
World War II, when Allies made extensive use of information or guesses
about occurrence of specific terms in German messages. The principal
example of known plaintext attack is linear cryptanalysis.

• Chosen Plaintext: the attacker can (possibly adaptively) ask for the
ciphertexts of arbitrary plaintext messages. This is formalized by allowing
the adversary to interact with an encryption oracle, viewed as a black
box. Notable examples are differential cryptanalysis, where the attacker
aims to recover the key or part of it, but also the well known byte-at-a-
time AES-ECB decryption, that allows the adversary to obtain the full
plaintext without knowing anything about the key.

31



• Chosen Ciphertext: the attacker can choose one (or some) ciphertext
and obtain the correspondent plaintext. Of course if the attacker is able
to obtain the decryption of any ciphertext at any moment the system
is broken and there is no need of attack. Chosen ciphertext attack are
hence generally based on the availability of a limited number of (adaptive
or not) queries to the decryption oracle. From here comes the notion of
lunchtime attack, which refers to the idea that a user’s computer, with
the ability to decrypt, is available to the attacker while the user is out to
lunch. Moreover, if the target is a specific ciphertext, the attacker is not
allowed to decrypt it.

There are other kind of attacks, not treated here, that do not rely on theoretical
weaknesses of the cipher but instead exploit their poor implementation. The
main possible outcomes of the attacks described above are classified according
to the type of information recovered during them. Such outcomes are ordered
from the least favorable for the attacker to the most one.

• Distinguishing Attack: the attacker is able to distinguish the encrypted
data from random data. Shannon’s principles of diffusion and confusion
are particularly helpful in avoiding this kind of vulnerability (as well as
the other ones).

• Partial Key Recovery: the attacker is able to get some information
about the key, such as some bits of the key or other relations among
them.

• Global deduction: the attacker finds a functionally equivalent algorithm
for encryption and/or decryption with a fixed key k without requiring the
knowledge of the key itself.

• Key recovery (total break): The attacker is able to recover the secret
key k.

Even if block ciphers are often relatively complicated, and hence difficult to
analyze, it is often surprisingly easy to find attacks on most constructions. The
two most common attacks among the ones cited above are linear and differential
cryptanalysis. Every modern block cipher is designed with resistance against
these attacks well in mind. We will now give a brief introduction to linear
cryptanalysis, while differential cryptanalysis will be presented in greater detail
in the next section, since it will play a very important role in the rest of this
work.
Linear cryptanalysis [23] was developed my Matsui in the early 1990s. The basic
idea is to search linear relationships between the input and output that occurs
with higher probability than would be expected for a random permutation. For
linear relationship we mean an expression like

xi1 ⊕ · · · ⊕ xil ⊕ yj1 ⊕ · · · ⊕ yjm ,

where (x, y) is a plaintext-ciphertext pair. If we let x run through all the possible
plaintext, and map it to y via a random permutation, we expect an expression
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like that to be zero about half of the times. For this reason, assuming uniform
x and k, we define the linear bias of a set of bit positions i1, ..., il, j1, ..., jm as

ε :=
∣∣∣∣P[xi1 ⊕ · · · ⊕ xil ⊕ yj1 ⊕ · · · ⊕ yjm = 0]− 1

2

∣∣∣∣ .
Matsui showed how a large enough bias in a cipher can be used to find the
secret key. As noted above, one important feature of this attack is that it is a
known plaintext attack. This is very significant, since for example an encrypted
file can provide a huge amount of known plaintext. Matsui showed that DES
([27], the standard encryption algorithm then replaced by AES) can be broken
with just 243 known plaintext-ciphertext pairs.

2.4 Differential cryptanalysis
Differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir
[3], who discovered it in the late 1980s. However, apparently IBM and the
National Security Agency of the United States were well aware of this kind of
technique ([13]) more than ten years before, and decided not to reveal it for
safety and political reasons. It exploits the fact that some input differences
may propagate with unusually high or low probability during the encryption
process, leading to a non-uniform distribution of the output differences. For
this reason, differential cryptanalysis is usually a chosen plaintext attack.
Let us fix a vectorial Boolean function f on V .

Definition 2.8. A differential over f is a pair (δI , δO) of elements of V with
associated differential probability

p(δI ,δO),f := P [xf + (x+ δI)f = δO] = P [DδI f(x) = δO]

for x uniformly distributed in V .

It represents the probability that, given two vectors whose difference is δI ,
the difference after applying f becomes δO.

Remark 2.9. As already shown in Remark 1.78, if f is linear, we get xf +
(x+ δI)f = δIf for every x and so the only possible differential is (δI , δIf) with
probability 1. Similarly, if f is a translation it holds xf + (x + δI)f = δI and
the only possible differential is (δI , δI).

Definition 2.10 (Difference Distribution Table). The Difference Distribution
Table, or DDT, of a function f is defined as the integer table with entries

DDTf [δI , δO] = 2np(δI ,δO),f = # {x : xf + (x+ δI)f = δO}

for each possible differential (δI , δO) ∈ V 2.

Remark 2.11 (Differential uniformity). The differential uniformity of f is
defined as

δ(f) := max
δI 6=0

DDTf [δI , δO]
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and the function f is said to be differentially δ-uniform if δ(f) = δ.

Notice that this is exactly Definition 1.75, with a slightly changed notation.
It is clear from the definition that a low differential uniformity is a desirable
property for a function in order to make a differential attack harder. From
Remark 2.9 it follows that δ(f) = 2n if f is a translation or a linear function,
while we have already shown in Remark 1.76 that for a generic Boolean function
f it holds δ(f) ≥ 2. We recall that if δ(f) = 2, f is said Almost Perfect
Nonlinear (APN).
Given a key spaceK and 1 ≤ s ≤ r (where r is the number of rounds), we denote
by ϕ(s)

k the composition of the first s round function, with keys k = k1, ..., ks
generated through the key schedule algorithm with master key k.

Definition 2.12. An s-round differential is a pair (δI , δO) whose corresponding
expected probability is

p(δI ,δO) := Px,k

[
xϕ

(s)
k + (x+ δI)ϕ(s)

k = δO
]

where x and k are uniformly distributed respectively on V and K.

Definition 2.13. Given 1 ≤ s ≤ r, an s-round differential trail for a differential
(δI , δO) is an (s+ 1)-tuple (β0, ..., βs) of intermediate differences at each round
such that β0 = δI and βs = δO.

The probability of a given s-round differential (δI , δO) is obtained as the sum
of the probabilities of its differential trails. Notice that for each differential trail,
only the confusion layer requires a probabilistic analysis since the diffusion layer
is linear and the key addition layer is a fixed translation. It can be shown (see
for example [19] or [28]) that the number of pairs of known plaintext required
for the attack to recover the key (or part of it) is proportional to the inverse of
probability of the trail.
Modern ciphers (like AES) are designed in order to be resistant against this
kind of attack. However, for its flexibility and effectiveness, the differential
attack is still widely study in order to find more general attacks that can break
even those ciphers considered secure against it. As an example, the idea behind
this work is to perform differential attack studying differentials with respect to
a new sum ◦ instead of the usual XOR. Of course such an approach can present
some complications; for example diffusion layer and key addition are no more
affine, and must be hence taken into consideration during the analysis.
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Chapter 3

Classification of 4-bit
permutations

S-boxes play a fundamental role for the security of nearly all modern block
ciphers. As already observed, in Substitution-Permutation Networks S-boxes
form the only non-linear part of the cipher. Therefore, S-boxes have to be cho-
sen carefully to make the cipher resistant against all kinds of attacks. In real
life application, small S-boxes are generally preferred, since they are much more
efficient to implement in hardware. For this reason, many modern block ciphers
use 4 or 8-bit S-boxes; for example, the aforementioned AES cipher relies on
8-bit S-boxes.
Even from the brief introduction we gave it is quite evident that given a Boolean
S-box f , a high nonlinearity NL(f) and a low differential uniformity δ(f) are
crucial properties in order to make f resistant against linear and differential
cryptanalysis respectively. A more detailed presentation of this fact is given
in [22]. Starting from here, we may affirm that some S-boxes are better than
others. However, since there exists a total of 2n! permutations on F n2 , an ex-
haustive search in order to determine the best S-boxes is infeasible even for not
so large values of n. This is the case, for example, of the AES S-box, called the
Inverse function. It is defined by identifying F n2 with F2n as

I : x 7→ x2n−2.

It can be shown ([21]) that the Inverse is AB (and thus APN) for odd n,
and differentially 4-uniform for even n. No permutation is known with better
resistance against linear and differential cryptanalysis for n = 8. However, it is
still not clear if these values are optimal.
The situation is a bit different for n = 4. First of all, it is known that there are
no APN permutations on F 4

2 ([22]), i.e. no possible S-boxes with δ(f) = 2. As
already observed, since f(x)+f(x+a) = f(x+a)+f(x+a+a) the differential
uniformity must always be even. We then conclude that the minimal differential
uniformity is 4. Moreover, as shown in [25] it must always hold max {W(f)} ≥ 8
which implies NL(f) ≤ 4. Thanks to these observations, we can now give the
following definition:
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Definition 3.1. Let S : F 4
2 → F 4

2 be an S-box. If

1. S is a bijection,

2. NL(S) = 4

3. and δ(S) = 4

we call S an optimal S-box.

Moreover, thanks to Proposition 1.80, both nonlinearity and differential
uniformity are invariant under affine equivalence. This means that instead of
checking all the 16! ∼ 244 possible permutation one can restrict to 302 equiv-
alence classes. In [22] these classes are analyzed, and 16 of them are found to
be made of optimal permutations. Notably one of those (the one named G3) is
affine equivalent to the Inverse function in dimension 4. The next table gives
the hexadecimal table for a representative from each class:

0 1 2 3 4 5 6 7 8 9 A B C D E F
G0 0 1 2 D 4 7 F 6 8 B C 9 3 E A 5
G1 0 1 2 D 4 7 F 6 8 B E 3 5 9 A C
G2 0 1 2 D 4 7 F 6 8 B E 3 A C 5 9
G3 0 1 2 D 4 7 F 6 8 C 5 3 A E B 9
G4 0 1 2 D 4 7 F 6 8 C 9 B A E 5 3
G5 0 1 2 D 4 7 F 6 8 C B 9 A E 3 5
G6 0 1 2 D 4 7 F 6 8 C B 9 A E 5 3
G7 0 1 2 D 4 7 F 6 8 C E B A 9 3 5
G8 0 1 2 D 4 7 F 6 8 E 9 5 A B 3 C
G9 0 1 2 D 4 7 F 6 8 E B 3 5 9 A C
G10 0 1 2 D 4 7 F 6 8 E B 5 A 9 3 C
G11 0 1 2 D 4 7 F 6 8 E B A 5 9 C 3
G12 0 1 2 D 4 7 F 6 8 E B A 9 9 C 5
G13 0 1 2 D 4 7 F 6 8 E C 9 5 B A 3
G14 0 1 2 D 4 7 F 6 8 E C B 3 9 5 A
G15 0 1 2 D 4 7 F 6 8 E C B 9 3 A 5

With this reduction to 16 equivalence classes it is now easy to study additional
criteria. As an example, in [22] we find a detailed analysis of algebraic degree of
these equivalence classes. Recall that algebraic degree for a vectorial Boolean
function F is defined as the highest algebraic degree of its components, i.e.

max
b∈V

degA(b · S).

As already observed, the set {b · S : b ∈ V } is invariant under affine equivalence,
and clearly so is degA(F ). High algebraic degree is often used as a criterion for
good S-boxes. It is known that any 4-bit bijection must have degree smaller
than 3. It is then interesting to observe that all the 16 equivalence classes of
optimal S-boxes have degree exactly 3. Moreover, for 8 of them degA(b ·S) = 3
for all b ∈ V . Again, one example of such an S-box is the Inverse function.
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For each optimal class, the number of vectors b for which the algebraic degree
of b · S is 2 or 3 are reported below:

G0 G1 G2 G3 G4 G5 G6 G7
degA(b · S) = 2 3 3 3 0 0 0 0 0
degA(b · S) = 2 12 12 12 15 15 15 15 15

G8 G9 G10 G11 G12 G13 G14 G15
degA(b · S) = 2 3 1 1 0 0 0 1 1
degA(b · S) = 2 12 14 14 15 15 15 14 14

Another interesting topic is the resistance against the algebraic attack, intro-
duced by Courtois and Pieprzyk ([15]). It is still not completely clear which
conditions exactly enable this kind of attack. However, the main criterion to
successfully mount an algebraic attack is the number of linear independent low
degree equations that are fulfilled by the input and output values of the S-box.
It can be shown that these optimal S-boxes are optimal also with respect to
algebraic attacks, in the sense that each of them fulfills 21 quadratic equations,
which is the minimum number for permutations in dimension 4.
In the last chapter, we will analyze these optimal permutations testing their
resistance with respect to an alternative sum.
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Chapter 4

Differential Cryptanalysis
revised

We are now ready to introduce more extensively the idea of an alternative sum,
where it comes from and what are its possible applications. We have already
defined block ciphers, and especially Substitution-Permutation Networks, as
ciphers generally consisting in iterated application of encryption functions in
the form of

ϕ = ρσk

where σk is the key addition, while ρ depends on the design of the cipher and
is assumed to be fixed and publicly available. The security of the encryption
process, i.e. the inability of a non-authorized party to recover the message,
strongly relies on the way the function ρ is designed. We already suggested
how attacks like linear and differential cryptanalysis can threat the security of
a block cipher and presented some general (empirical and theoretical) rules to
follow in order to reduce exposition to these attacks. A deeper study on the
properties that a generic cipher function ρ must satisfy to be considered secure
is out of the scope of this work. From now on, following the setting of [7] and
[12], we may assume as a minimum and crucial requirement that ρ 6∈ AGL(V ).
This guarantees that 〈ρ,T〉 (where T is the translation group with respect to
the usual XOR sum), the well studied group of the round functions introduced
in [14], is not the affine group AGL(V ). Although it is rather easy to satisfy
this requirement, it is much harder to prove that 〈ρ,T〉 is not contained in
any conjugate of AGL(V ) in Sym(V ). If this is the case, i.e. if there exists
g ∈ Sym(V ) such that 〈ρ,T〉 < AGL(V )g then there exists an operation ◦ such
that

〈ρ,T〉 < AGL(V, ◦),

which means that each encryption function is affine with respect to the opera-
tion ◦, a serious threat for the security of the cipher. Some example of attacks
that can be performed in this case are shown in [12] and [9]. For this reason,
from now on we will restrict our attention to the investigation of alternative
operations ◦ on V such that T < AGL(V, ◦). Moreover, we will always assume
T◦ < AGL(V ), since it guarantees faster computation. Those hypotesis are also
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central in [7], from which we will recover many important results.
Our goal is to show that an SPN which can be considered secure against classic
attacks (and especially differential cryptanalysis with respect to the usual sum)
might be broken by means of differential cryptanalysis carried out with this
newly introduced operation. For this purpose, many of the definitions given in
Section 2.4 can be rephrased in this setting just replacing + by ◦.

Definition 4.1. A ◦-differential over f is a pair (δI , δO) of elements of V with
associated differential probability

p◦(δI ,δO),f := P [xf ◦ (x ◦ δI)f = δO]

for x uniformly distributed in V .

Definition 4.2. We may then define a new difference distribution table as

DDT ◦f [δI , δO] = 2np(δI ,δO),f = # {x : xf ◦ (x ◦ δI)f = δO}

Definition 4.3. Finally, the ◦-differential uniformity of a Boolean function f
is defined as

δ◦(f) := max
δI 6=0

DDT ◦f [δI , δO].

Our aim is to detect ciphers and operations for which

p(δI ,δO),f := Px,k

[
xϕ

(s)
k ◦ (x ◦ δI)ϕ(s)

k = δO
]

is higher than the standard probability p(δI ,δO) for some differential (δI , δO). In
order to do that, we need to investigate how our new operation deals with the
different components of the cipher, whose behavior is well known only in terms
of the standard XOR. Doing so we will also explain the ratio that lies behind
some of the definitions given in the first chapter of this work, since they will be
necessary to present and better understand those interactions.

4.1 Interaction with the key-addition layer
As shown in Remark 2.9, the classical differential attack can rely on the property
that each + difference is maintained the same after the key is XORed. This
is not the case when considering ◦-differences. Let’s consider two input with
difference ∆, denoted by x and x ◦ ∆. After the key addition, the difference
becomes

(x+ k) ◦ ((x ◦∆) + k) =: ∆◦.

It is easy to see that ∆◦ = ∆ for each x, k ∈ V if and only if + = ◦. However,
for k ∈ W◦ we can replace + with ◦ and the previous equation holds, which
means that the key addition layer behaves as a tranlation also with respect to
the ◦ difference. This shows the importance of the weak key space W◦ when
studying a new sum, and also explains where the name weak key comes from.
Of course in the general case we cannot assume k ∈ W◦. This makes a further
investigation on ∆◦ necessary in order to better understand how differences
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propagates through the key addition layer. First of all, notice that we already
assumed T+ < AGL(V, ◦). This makes the key addition a key-dependent affine
transformation with respect to ◦. Furhter details and explainations are given
in the next chapter, however it can be proven (see Theorem 5.15) that the error
committed when considering ◦ difference instead of + differences lives in the
error set U◦, which also happens to be a subset of W◦. Moreover (Proposition
5.18) ∆◦ is independent from the state x, and it holds

∆◦ = ∆ + k ·∆.

By definition, k ·∆ ∈ U◦, so the number of possible output differences is |U◦|
(one being ∆ itself). Hence another important factor when trying to control
the effect of the key addition layer is the dimension of U◦. Starting from the
previous equation, we may introduce a new table, called Key Distribution Table,
that will help us in the study of possible errors committed.

Definition 4.4. The Key Distribution Table (KDT) of an operation ◦ is the
integer table defined by

KDT ◦[δI , δO] := # {k ∈ V |δI + k · δI = δO} .

Notice that if the input difference δI ∈ W◦, no matter the key considered,
the output difference after the key addition layer is δI with probability one.
This is because, as previously stated

(x+ k) ◦ ((x ◦ δI) + k) = δI + k · δI = δI

since δI ∈W◦ implies

k · δI = k + δi + k ◦ δI = k + δi + k + δi = 0.

If δI 6∈ W◦, the output difference equals δI + k · δI . The error may be zero,
leading to the output difference δI (this is always the case e.g. when k ∈ W◦),
or may be different from zero, leading to δI+u for some u ∈ U◦. A more detailed
analysis of KDT, which will be covered in the next section, will suggest other
important conditions that our operation ◦ should satisfy in order to make key
addition layer analysis successful.

4.2 Interaction with the confusion layer

While in classical differential cryptanalysis differential probabilities are only
induced by the confusion layer, in the previous section we illustrated that, with
new operations, probabilities are also added by the key-addition layer. For the
probability of a ◦-differential to be larger than the probability of a +-differential,
we should either have trails with larger probabilities and/or more trails. The
first goal can only be achieved if the values in the DDT of the S-box computed
with respect to ◦ are larger than those in the classical DDT computed with
respect to the XOR. Let us give an example where this is true.

41



Example 4.5 ([12]). Let n = 3 and d = 1. As we will see, there exists only one
possible alternative sum on V = (F2)3 satisfying our constraints, with defining
matrix (see Theorem 5.13)

Θ =
(

0 1
1 0

)
.

We will denote it by �. Details on the notation and on how sums with this
operation are actually computed are given in the next chapter. For now, we
just present the results obtained as an example. Let us define an S-box γ :
(F2)3 → (F2)3 by

x 0x 1x 2x 3x 4x 5x 6x 7x
xγ 0x 6x 2x 1x 5x 7x 4x 3x

Here each vector is interpreted as a binary number, most significant bit first,
and then represented using the hexadecimal notation. By computing the DDT
of γ with respect to the classic XOR, we obtain the following result:

+ 0x 1x 2x 3x 4x 5x 6x 7x
0x 8 · · · · · · ·
1x · · 2 2 · · 2 2
2x · 2 2 · 2 · · 2
3x · 2 · 2 2 · 2 ·
4x · 2 2 · · 2 2 ·
5x · 2 · 2 · 2 · 2
6x · · · · 2 2 2 2
7x · · 2 2 2 2 · ·

As we can see, γ is APN with respect to classic + operation. However, if we
compute the DDT with respect to our new � sum, we obtain

� 0x 1x 2x 3x 4x 5x 6x 7x
0x 8 · · · · · · ·
1x · · · 4 · · 4 ·
2x · · 4 · · · · 4
3x · 4 · · · 4 · ·
4x · 4 · · · 4 · ·
5x · · 4 · · · · 4
6x · · · · 8 · · ·
7x · · · 4 · · 4 ·

We can see that γ is differentially 8-uniform with respect to �; if the difference
between two input is 6x the difference between the outputs will be 4x, no matter
what the inputs are. This is a clear weakness that can easily be exploited by
an attacker using this new sum instead of the classic one.

This example may seem an isolated coincidence. However, the last chapter
of this work will be devoted to show how it is possible to obtain many results
like this on optimal 4-bit S-boxes (in the sense of Definition 3.1).

42



4.3 Interaction with the diffution layer
The last fact we have to consider, when trying to transport differential crypt-
analysis to our setting, is how ◦-differences propagate through the diffusion
layer, which is, in our model, a +-linear map. The role of the diffusion layer,
in the sense of keeping the cipher safe from differential attack, is to spread the
differences as fast and far as possible in the block, i.e. to quickly activate as
many S-boxes as possible. However, it does not have direct role in terms of dif-
ferential probability when differentials are computed with respect to the XOR,
since it is a XOR-linear map, and consequently (thanks to Remark 2.9 again)
each +-differential is deterministic with respect to the diffusion layer. On the
other hand though, in the case of ◦-differentials, an attacker willing to predict
the output difference of the diffusion layer λ, given an input difference ∆, must
determine the distribution of the elements of the kind of

xλ ◦ (x ◦∆)λ (4.1)

with λ which in general is not linear with respect to ◦. This results in a huge
◦-non-linear map with 2n inputs, which will make further analysis non trivial.
Moreover, unlike what we manage to do in the case of the key addition layer, it
can be shown ([12]) that Equation 4.1 is not independent from the state x. It
is then clear that a successful attack with respect to an alternative operation
◦ may rely on the linearity of the diffusion layer with respect also to ◦. For
this reason, the structure of the subgroup H◦ = GL(V,+) ∩ GL(V, ◦) is one
of the key features to take into consideration when studying a new sum. A
lot of work has been done to better understand it in [12] and [7]. In the next
chapter we will at first present the main results obtained in those two papers,
and then show how we tried to extend them to slightly different settings and
which results we have achieved.
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Chapter 5

Analysis of H◦

As just observed, a successful differential attack on a Substitution-Permutation
Network with an alternative sum ◦ must rely on the fact that the mixing layer
λ is linear also with respect to ◦, i.e. λ ∈ H◦. For this reason, the analysis of
H◦ plays a very important role in determining the success possibility of such an
attack. This chapter is hence the heart of our work. In Section 5.1 some results
on a generic ◦ operation and the related groups are presented. Those results,
summarized from [12] and [7], are the starting point for the next sections. In
Section 5.2 we show the properties (especially Theorem 5.28 and Theorem 5.30)
that hold if we force the dimension of W◦ to be n− 2, where n is the dimension
of V . In the last two sections, we try to reproduce those results in different
settings: in Section 5.3 we fix d = n−3, while in Section 5.4 we study a smaller
sum that acts in parallel.

5.1 General results

We are now ready to summarize the main results from [12] and [7] for a generic
alternative sum.

Definition 5.1. A Jacobson radical ring is a ring (V,+, ·) such that (V, �) is a
group, where the operation � is defined as a � b = a+ b+ a · b for each a, b ∈ V .

Theorem 5.2 ([10]). Let K be any field, and (V,+) be a vector space of any
dimension over K. There is a one to one correspondence between

1. abelian regular subgroups of AGL(V,+);

2. commutative, associative K-algebra structures (V,+, ·) that one can im-
pose on the vector space structure (V,+) such that the resulting ring is
radical.

In this corrispondence, isomorphism classes of K-algebras correspond to conju-
gacy classes of abelian regular subgroups of AGL(V,+), where the conjucation
is under the action of GL(V,+).
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Remark 5.3. The correspondence mentioned in the previous result may be
written explicitly, proceedings as follows. Let T < AGL(V ). Thanks to Remark
1.7, it can be written in the form

T = {τa|a ∈ V } .

For each a ∈ V there exists Ma,T ∈ GL(V,+) and σb ∈ T+ for some b ∈ V such
that

τa = Ma,Tσb.

Since T is fixed for now, in order to keep the notation lighterMa,T will be simply
denoted by Ma. For any a ∈ V , let us define the map δa = Ma − 1V . Then,
the operation · defined by x · a = xδa is such that the structure (V,+, ·) is a
commutative K-algebra and the resulting ring is radical. Moreover, since by
definition 0τa = a we have a = 0τa = 0Maσb = b, which implies τa = Maσa for
each a ∈ V . Denoting by ◦ the operation induced by T, we finally have T◦ = T

as before. Computing explicitly δa we get

x · a = xMa − x = x ◦ a+ x+ a

which is the dot product we gave in Definition 1.12. Notice that it is distributive
over +, and that x ◦ a = x + a + x · a is the operation that makes (V,+, ·) a
radical ring. We will now focus on the case K = F2, even if many of this results
remains true also in a more general setting.

Proposition 5.4 ([12]). It also holds Aut(V,+, ·) = H◦.

Definition 5.5. In the above setting we define

Ω(T◦) = Ωo = {Ma|a ∈ V } < GL(V ).

Theorem 5.6 ([8]). Let d = dim(W◦). Then 0 < d ≤ n− 2.

Now we want to prove a characterization due to [7] that we will extensively
use in the rest of the work. We will need the following two results.

Theorem 5.7 ([7]). Let T < AGL(V ) be an elementary abelian regular group,
with associated operation ◦. Let d = dim(W◦) and let m = n − d. Then there
exists g ∈ GL(V ) such that Ω(T◦g) < U(V ), where U(V ) is the group of upper
triangular linear maps on V , and W g

◦ = span {em+1, ..., en}.

Lemma 5.8 ([10]). Let T < AGL(V ) be abelian and regular. Then for each
σx ∈ T+ and τy ∈ T◦ we have

[σx, τy] = σx·y,

where · is the product of the F2-algebra related to T as in Theorem 5.2, and
[σx, τy] := σ−1

x τ−1
y σxτy.

Remark 5.9. Notice that in our setting Lemma 5.8 implies that T+ normalises
T < AGL(V ) if and only if σx·y ∈ T for all x, y ∈ V . Indeed, if for all σx ∈ T+
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we have Tσx = T, then
σx·y = σ−1

x τ−1
y σxτy ∈ T.

Conversely, if σx·y ∈ T for each x, y ∈ V then

σ−1
x τ−1

y σx = σx·yτ
−1
y ∈ T.

Finally, we notice that the condition σx·y ∈ T for all x, y ∈ V is equivalent to
x · y · z = 0 for all x, y, z ∈ V .

We are finally ready to prove this useful characterization.

Theorem 5.10. Let T < AGL(V,+) abelian regular and let ◦ the operation
induced on V . Let d = dim(W◦), m = n − d and let us assume W◦ =
span {em+1, ..., en}. Then, T+ < AGL(V, ◦) if and only if for all My ∈ Ωo
there exists a matrix Σy ∈ (F2)m×d such that

My =
(
1m Σy

0d,m 1d

)
.

Proof. By Theorem 5.7, we know that there exists another group operation � on
V such that the corresponding translation group is conjugated, by an element
of GL(V ), to T◦ and satisfies W� = W◦ and Ω(T�) = {Ma|a ∈ V } < U(V ). Let
now y ∈ V , Ay ∈ (F2)m×m an upper triangular matrix and Σy ∈ (F2)m×d such
that

My =
(
Ay Σy

0d,m 1d

)
.

Notice that the lower structure of the matrix is due to the property ei ∈W� for
each m+1 ≤ i ≤ n, i.e. y�ei = eiMy+y = y+ei for each m+1 ≤ i ≤ n. Recall
that, thanks to Lemma 5.8, T+ < AGL(V, �) if and only if for all x, y ∈ V it
holds x · y ∈W�. But this is true if and only if xMy − x ∈W� for all x, y ∈ V .
Considering x ∈ Span{e1, ..., em}, we have that xMy − x ∈ W� if and only if
Ay = 1m.
In order to conclude, we need to prove that each conjugate T◦ = T g� is such that
all the matrices in the group Ω(T◦) are of the form denoted above, provided that
g ∈ GL(V ) and W◦ is spanned by the last d vectors of the canonical basis. Let
then g ∈ GL(V ) such that T◦ = T g� . Since W�g = W (T g� ) = W (T◦), then
Span{em+1, ..., en}g = Span{em+1, ..., en} and also Span{em+1, ..., en}g−1 =
Span{em+1, ..., en}. Consequently, we have

g =
(
G1 G2
0d,m G3

)

and
g−1 =

(
G−1

1 G′2
0d,m G−1

3

)
,

for some G1 ∈ (F2)m×m, G2, G
′
2 ∈ (F2)m×d and G3 ∈ (F2)d×d. Consequently, if
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M ∈ Ω(T�), it holds

Mg =
(
G−1

1 G′2
0d,m G−1

3

)(
1m Σm×d
0d,m 1d

)(
G1 G2
0 G3

)
=
(
1m Σ′m×d
0d,m 1d

)

and therefore the claim follows from Ω(T◦) = Ω(T g� ) = Ω(T�)g.

Remark 5.11. Σa = 0 for each a ∈ W◦. Moreover, since Ma◦b = MaMb, we
obtain

Ma◦b =
(
1m Σa + Σb

0d,m 1d

)
.

Remark 5.12. Thanks to Remark 5.3 we know that x ◦ a = xτa = xMa + a.
From this we get

(a+ b) ◦ c = aMc + bMc + c = (aMc + c) + (bMc + c) + c = (a ◦ c) + (b ◦ c) + c.

Notice that it is not distributive. Writing a = ∑
ξiei we get

a ◦ b =
{∑

ξi 6=0 b ◦ ei if weight(a) is odd
(∑ξi 6=0 b ◦ ei) + b otherwise.

This fact allows us to compute a ◦ b in polynomial time. Moreover, we see that
the matrices Σi for 1 ≤ i ≤ m completely characterize ◦. We can therefore
write

Mei =
(
1m Σei

0d,m 1d

)
=

 1m

bi,1
...

bi,m
0d,m 1d


denoting by bi,j the last d components of the j-th row of Mei . The bij can be
seen as elements of F2d and stored in a matrix Θ◦ = {bij} ∈ (F2d)m×m. This
matrix completely defines the operation ◦. It can be proven that

Theorem 5.13. A matrix Θ◦ ∈ (F2d)m×m, defined by

Θ◦ =


0 b2,1 · · · bm,1

b2,1 0 · · · bm,2
...

... . . . ...
bm,1 bm,2 · · · 0


is associated to a ◦ operation such that T+ < AGL(V, ◦) andW◦ = span {em+1, ..., en}
if and only if Θ◦ is zero-diagonal, symmetric and no F2-linear combination of
columns of Θ◦ is the null vector. In this case, Θ◦ is called defining matrix and
the operation ◦ is defined by letting Σei = Θ◦[·, i] for each 1 ≤ i ≤ m.

Proof. Let as above d = n − m ≤ n − 2. Thanks to Theorem 5.10 for each
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1 ≤ i ≤ n− d we can write

Mei =
(
1n−d Σei

0d,n−d 1d

)
.

We then build the matrix Θ◦ in the above statement by filling its columns with
the rows of the matrices Σei . Since T◦ is 2-elementary, for each 1 ≤ i ≤ n − d
it holds ei ◦ ei = 0, which means bi,i = 0. In addition, since the operation ◦
is commutative, for each 1 ≤ i, j ≤ n − d we have ei ◦ ej = ej ◦ ei, and hence
bi,j = bj,i. Finally, let us assume that anF2-linear combination of columns of
Θ is the null vector. Without loss of generality, let us assume Σe1 + Σe2 = 0.
From this it follows that

Me1◦e2 = Me1Me2 =
(
1n−d Σe1

0d,n−d 1d

)(
1n−d Σe2

0d,n−d 1d

)
=

=
(
1n−d Σe1 + Σe2

0d,n−d 1d

)
= 1n,

which implies e1 ◦ e2 = w, for some w ∈ W◦, i.e. e1 = e2 ◦ w = e2 + w. This
proves that e1 + e2 ∈ W◦, which is a contradiction, since e1 and e2 can never
be weak keys.

Remark 5.14. As a consequence, as little as m(m− 1)/2 values are needed to
define such an operation.

Theorem 5.15. Let ◦ be defined as above. For each x, y ∈ V there exists
εx,y ∈ U◦ such that x+y = x◦y+εx,y, with εx,y = x·y = (0, ..., 0, (x1, ..., xm)Σy).
Moreover U◦ ⊆W◦.

Proof. Let us fix x, y ∈ V and study in greater detail the error εx,y = x · y.
Since V = W⊥◦

⊕
W◦, we can write x = (x, x̃) with x ∈ (F2)n−d and x̃ ∈ (F2)d.

First of all notice that, if x ∈W◦ then x · y = 0. In fact, in this case

x · y = x+ y + x ◦ y = x+ y + x+ y = 0.

In the general case we have

x · y = xMy + y + x+ y =

(x, x̃)
(
1n−d Σy

0d,n−d 1d

)
+ x = (0, xΣy) ∈W◦,

which does not depend on x̃, the component of x in the space of weak keys. As
the first n− d coordinates of x · y are null, we also proved that any error is part
of W◦.

Corollary 5.16. It follows that U◦ is composed of all the possible vectors w ∈
W◦ whose last d components are all the possible F2-linear combination of the
rows of the matrices Σx.
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Remark 5.17. From the fact that x · y ∈ U◦ ⊆W◦, it follows that x · y · z = 0
for each x, y, z ∈ V .

Proposition 5.18. For each x, k,∆ ∈ V it holds

(k + x) ◦ ((x ◦∆) + k) = ∆ + k ·∆.

Proof. Let x, k,∆ ∈ V . Rewriting the above equation we obtain

(x+ k) ◦ ((x ◦∆) + k) = (x+ k) ◦ (x+ ∆ + x ·∆ + k) =
= x+ k + x+ ∆ + x ·∆ + k + (x+ k) · (x+ ∆ + x ·∆ + k) =

∆ + x ·∆ + x · x+ x ·∆ + x · x ·∆
+x · k + k · x+ k ·∆ + k ·∆ · x+ k · k =

∆ + k ·∆,

since x · x = x + x + x · x = 0 and all the triple products vanish because of
Remark 5.17.

The importance of this equation in studying the interaction of ◦ differenced
with the key addition layers has already been explained in Section 4.1. We will
now introduce some deeper results about KDT.

Definition 5.19. The Key Distribution Table (KDT) of an operation ◦ is the
integer table defined by

KDT ◦[δI , δO] := # {k ∈ V |δI + k · δI = δO} .

Proposition 5.20. The KDT ◦ table is symmetric, that is

KDT ◦[∆1,∆2] = KDT ◦[∆2,∆1]

for each ∆1,∆2 ∈ V .

Proof. Let us fix ∆1,∆2, k ∈ V and suppose that ∆1 + k · ∆1 = ∆2. Then it
holds

∆2 + k ·∆2 = ∆1 + k ·∆1 + k · (∆1 + k ·∆1) =
= ∆1 + k ·∆1 + k ·∆1 + k · k ·∆1 = ∆1,

again thanks to Remark 5.17. Therefore KDT ◦[∆1,∆2] = KTD◦[∆2,∆1].

Remark 5.21. As already pointed out, the more zero entries the KDT has,
the easier it is to control the effect of the key addition layer. It turns out that
the number of zero entries is strictly related to the dimension of the weak key
space W◦.

Lemma 5.22. For each a ∈ V , it holds

rk(Σa) ≤ min(n− d− 1, d).

where d = dim(W◦) and Σa is the unique matrix associated to a through Theo-
rem 5.10.
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Proof. If a ∈ W◦ there is nothing to prove, since Σa = 0n−d,d. If not, then
a = (a, ã) with a ∈ (F2)n−d and ã ∈ (F2)d. Moreover, a 6= 0. Since 0 = a ◦ a =
aMa+a, it follows that a(Ma+1n) = 0. This implies, thanks to the description
of Ma given in Theorem 5.10, that

a ∈ ker
(

0 Σa

0 0

)
.

Therefore a ∈ ker(Σa). From this it follows

rk(Σa) = dim(Im(Σa)) = n− d− dim(ker(Σa)) < n− d− 1.

Now, if n−d−1 ≤ d, the result clearly holds. Otherwise we have d < n−d−1 <
n− d, while rk(Σa) ≤ d = min(n− d− 1, d).

Remark 5.23. This bound reaches minimum values for extremal values of d,
which are (thanks to Theorem 5.6) d = 1 and d = n− 2.

Theorem 5.24. The number of non zero entries in each row of the key distri-
bution table KDT ◦ is upper bounded by 2min(n−d−1,d).

Proof. Given a fixed ∆ ∈ V , the number of non zero entries in the rowKDT ◦[∆, ·]
depends on the values of k ∈ V . It holds k ·∆ = kΣ∆ ∈ Im(Σ∆), and

dim(Im(Σ∆)) = rk(Σ∆) ≤ min(n− d− 1, d)

thanks to Lemma 5.22. The thesis then immediately follows.

Corollary 5.25. For every fixed δI ∈ V , it holds

KDT ◦[δI , δo] ∈
{

0, 2n−rk(ΣδI )
}
.

Proof. Let δo ∈ V such that KDT ◦[δI , δO] 6= 0.Two keys k1, k2 ∈ V are such
that k1 ·δI = k2 ·δO if k1 and k2 are in the same class modulo ker(ΣδI ). Recalling
that the value of k · ∆ does not depend on the last d components of k, then
KDT ◦[δi, δo] is the number of elements contained in each class modulo ker(ΣδI )
multiplied by 2d. Therefore

KDT ◦[δI , δo] = 2d2dim(ker(Σδi )) =
= 2d2n−d−rk(Σδi ) = 2n−rk(Σδi ).

(5.1)

5.2 The case d = n− 2
We will now investigate deeper the case d = n− 2. As shown in Theorem 5.24,
such a choice for d allows us to have the best bound of 2 non-zero entries for
each row of the KDT and hence a greater control on how differences propagates
through the key addition layer. Notice that the bound grows exponentially with
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d, until d ≤ n− d− 1.
Let us fix for this section an operation ◦ such that d = dim(W◦) = n − 2.
Thanks to Theorem 5.13, its representing matrix can be written as

Θ =
(
0 b
b 0

)

and hence depends on a sigle nonzero element b ∈ (F2)n−2. Observe that
2n−2 − 1 such operations exist, since we do not count the trivial one which
conicides with +. The matrices associated with the first two basis vectors are
respectively

Me1 =

 12
0
b

0n−2,2 1n−2

 , Me2 =

 12
b
0

0n−2,2 1n−2

 ,
while Mej = 1n for j ≥ 3. Moreover, applying Corollary 5.16, we obtain
U◦ = {0, u} where u = (0, 0,b) ∈ (F2)n.
We are now ready to present a very important and useful result, due to [7],
which affirms that all the translation groups for sums ◦ with d = n − 2 are
conjugated by an element g ∈ GL(V ). Notice that this fact is much stronger
than Theorem 1.6, since there we can choose g ∈ Sym(V ). Moreover, thanks
to Theorem 5.7 we may restrict ourselves to prove this theorem for translation
groups defining operations characterized as above, without loss of generality.
Let for now T◦ and T� be elementary abelian regular subgroups of AGL(V,+)
defining two operations ◦ and � respectively such that dim(W◦) = dim(W�) =
n−2 andW◦ = W� = span {e3, ...en}. Denote by b◦ and b� the defining vectors
for the two operations.
Lemma 5.26. If b◦ and b� have the same Hamming weight, i.e. the same
number of nonzero coordinates when seen as elements of (F2)d, there exists
g ∈ GL(V ) such that T� = T g◦ .

Proof. Let us denote T◦ = 〈τ◦e1 , ..., τ
◦
en〉 and T� = 〈τ�e1 , ..., τ

�
en〉. If b◦ and b� have

the same Hamming weight, i.e. the same number of non-zero coordinates, then
there exists a permutation matrix P ∈ (F2)(n−2)×(n−2) such that b◦P = b�. Let
P ′ ∈ (F2)n×n be the permutation matrix defined as

P ′ :=


1 0
0 1

0 · · · 0
0 · · · 0

0 0
...

...
0 0

P

 .

Notice that when we multiply a matrix M by P ′ on the right we are permuting
the last n − 2 columns of M . On the other hand, multiplying M by P ′−1 on
the left permutes the last n− 2 rows of M . Hence, we have

P ′−1τ◦eiP
′ = P ′−1M◦eiP

′σeiP ′ = τ�eiP ′ = τ�eiπ,
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where π is the index permutation induced by P ′. But this implies P ′−1T◦P
′ =

T�. Hence, the two groups corresponding to vectors with the same weight are
conjugated.

Lemma 5.27. Let
b◦ = (1, ..., 1︸ ︷︷ ︸

i

, 0, ..., 0)

and
b◦ = (1, ..., 1︸ ︷︷ ︸

i+1

, 0, ..., 0)

for 1 ≤ i ≤ n− 3. Then there exists g ∈ GL(V ) such that T� = T g◦ .

Proof. With the same notation we used above, let P ∈ (F2)n×n be the matrix
whose j-th row Pj = ej if j 6= i+ 2 and Pi+2 = ei+2 + ei+3, i.e.

P :=



1 0 · · ·
0 1
... . . .

· · · 0
· · · 0

...
0 · · ·
0 · · ·
0 · · ·

1 1 · · · 0
0 1 · · · 0
· · · 0


.

Notice that P−1 = P . Note also that multiplying a matrix M by P no the
right we are updating its (i + 3)-th column by summing up its (i + 2)-th and
(i + 3)-th columns. On the other hand, multiplying a matrix M by P−1 = P
on the left we are updating its (i+ 2)-th row by summing up its (i+ 2)-th and
(i+ 3)-th rows. Therefore it holds

Pτ◦ejP = PM◦ejPσejP = τ�ej

for j 6= i+ 2 and
Pτ◦ei+2+ei+3P = τ�ei+2 .

Notice that τ◦ei+2+ei+3τ
◦
ei+3 = τei+2 . This implies that

〈τ◦e1 , ..., τ
◦
ei+1 , τ

◦
ei+2+ei+3 , τ

◦
ei+3 , ..., τ

◦
en〉 = T◦.

Therefore we have PT◦P = T�. Notice that, together with Lemma 5.26, we
have proved that if b◦ and b� are such that their Hamming weights differ by
one, the associated groups T◦ and T� are conjugated in GL(V ).

Theorem 5.28. Let T◦ and T� elementary abelian regular subgroups of AGL(V,+)
defining two operations ◦ and � respectively such that dim(W◦) = dim(W�) =
n− 2. Then, there exists g ∈ GL(V ) such that T� = T g◦ .

Proof. As already observed, we can restrict ourselves without loss of generality
to the case of W◦ = W� = span {e3, ...en}. Let us denote by d1 and d2 the
Hamming weight of b◦ and b� and assume, again without loss of generality,
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that d1 < d2. We can define

bj = (1, ..., 1︸ ︷︷ ︸
j

, 0, ..., 0)

for d1 ≤ j ≤ d2 and denote by Tj the translation group associated with the sum
defined by bj . Thanks to Lemma 5.26, T◦ is conjugated in GL(V ) to Td1 and
T� to Td2 . Moreover, applying Lemma 5.27 we have that Tj is conjugated to
Tj+1 for each j and this completes the proof.

Thanks to this result we are now allowed to fix a single operation ◦ (or
equivalently, a single nonzero element b ∈ (F2)n−2), and reduce to that (up
to conjugation) many computations. This is for example the case of the last
section of this work, in which we will analyze differential properties of some
permutations. However, this statement is no longer guaranteed to hold if we
let the dimension of the weak key space grow.
The other important result we will prove for this case is due to [12] and will
rule the composition of the group of automorphisms H◦ of our operation.

Lemma 5.29. For each λ ∈ H◦ it holds W◦λ = W◦ and U◦λ = U◦.

Proof. Let λ ∈ H◦ and let us prove that W◦λ = W◦. Let a ∈ W◦ and b ∈ V .
We want aλ ◦ b = aλ+ b. But

aλ ◦ bλ = (a ◦ b)λ = (a+ b)λ = aλ+ bλ

and since λ is invertible, W◦λ = W◦.
On the other hand, if a ∈ U◦ then a = b · c for some b, c ∈ V . Then aλ =
(b · c)λ = bλ · cλ, hence aλ ∈ U◦.

Theorem 5.30. Let b ∈ (F2)d (with d = n − 2) the defining vector of ◦, and
λ ∈ (F2)n×n. The following are equivalent:

• λ is compatible with ◦;

• there exist A ∈ GL((F2)2,+), D ∈ GL((F2)d,+), and B ∈ (F2)2×d such
that

λ =
(
A B
0d,2 D

)
and bD = b.

Proof. Let us write λ into the block form

λ =
(
A B
C D

)

with the dimensions of the blocks as indicated above, and suppose λ ∈ H◦ =
GL(V,+) ∩GL(V, ◦). Since, from Lemma 5.29, W◦λ = W◦ and W◦ is spanned
by the last d vectors of the canonical basis, it must hold C = 0d,2. As a
consequence, A and D must be invertible (since λ ∈ H◦). Finally, since from
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Lemma 5.29 again U◦λ = U◦ and as previously observed U◦ = {0, u}, we obtain
bD = b.
Conversely, let us assume that the above conditions hold. Recalling that H◦ =
Aut(V,+, ·) we want to prove that given x, y ∈ V it holds

(x · y)λ = xλ · yλ.

If x ∈ W◦ also xλ ∈ W◦ and the equation is trivial since both sides are zero.
It is then sufficient to consider the case x = e1 and y = e2. It is easy to check
that both the products e1 · e2 and e1λ · e2λ are nonzero and hence equal to u,
so the above equation holds and this completes the proof.

As already observed many times, in order to perform a successful differential
attack we need that the mixing layer λ ∈ H◦. However, as shown in Section
2.2, not all λ ∈ H◦ may be used into the mixing layer of a cipher; indeed, λ is
required also to be secure in the standard setting, while providing diffusion for
the cipher (i.e. activating as many S-boxes as possible). If both these conditions
are satisfied, we found a λ that can actually be the mixing layer of a cipher,
and hence one or more ciphers against which our attack may outperform the
classic one. An interesting example of a distinguish attack built in this way
is given in [12]. In the next sections, we try to reproduce the main results of
the case d = n − 2, especially Theorem 5.28 and Theorem 5.30, in two new
different settings. We will do this in order to be able to include more λ’s and
consequently more possible ciphers in our analysis. The first one is d = n− 3,
a natural continuation of our analysis. As an immediate drawback, we observe
that the bound of Theorem 5.24 is twice the one we achieved in the previous
case. On the other hand, we obtain new possible sums, split into two different
classes of conjugation with slightly different conditions on H◦. In the second
setting we will operate on parallel sums, i.e. sums that acts in parallel on
smaller blocks of components. Each sum has d = n − 2. The importance of
this case is clear once again from Section 2.2; since usually the S-boxes are
small and act in parallel, while the mixing layer is the same, studying a sum
that operates on each block separately and for which λ is linear allows us to to
perform an attack on bigger ciphers. We start looking at sums acting on two
parallel blocks, but then generalize the results to m parallel sums. The choice
d = n − 2 offers all the advantages this condition brings in the classic setting.
Moreover, an equivalent of Theorem 5.28 allows us to fix the same sum for all
the parallel blocks (up to conjugation).

5.3 The case d = n− 3

Let us fix for now an operation ◦ such that d = dim(W◦) = n − 3. Thanks to
Theorem 5.13, its representing matrix can be written as

Θ◦ =

 0 b2,1 b3,1
b2,1 0 b3,2
b3,1 b3,2 0
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such that no F2-linear combination of columns of Θ◦ is the null vector (notice
also the simmetry). Non-identity matrices are associated to the first three basis
vectors, more precisely

Me1 =

 13

0
b2,1
b3,1

0n−3,3 1n−3

 , Me2 =

 13

b2,1
0
b3,2

0n−3,3 1n−3

 , Me3 =

 13

b3,1
b3,2
0

0n−3,3 1n−3


while as always Mej = 1n for j > 3.

Remark 5.31. Thanks to Theorem 5.24 the number of nonzero entries for each
row of the KDT ◦ is upper bounded by 4. Notice that this is twice the bound
for the case d = n− 2.

Notation 5.32. Given i, j < 3 (so that ei and ej are components of the strong
key space) we have

ei · ej = ei ◦ ej + ei + ej = eiMj + ej + ei + ej = (0, 0,bi,j)

thanks to the structure of matrices Mi as pointed out above. We can therefore
introduce the notation

uij = uji := ei · ej = (0, 0,bi,j).

Remark 5.33. Thanks to Corollary 5.16, we know that U◦ is composed of
all the vectors w ∈ W◦ whose last d components are all the possible F2-linear
combinations of the vectors bi,j . At least two of these vectors are granted to be
independent thanks to the constraints on Θ◦, hence dim(U◦) ≥ 2. Moreover,
all these vectors are spanned by u12, u13 and u23 and this implies dim(U◦) ≤ 3.

It turns out that dim(U◦) is a key information in explaining the behaviour
of the operation ◦. As we have just seen it can be 2 or 3. This confirms the
(already known) fact that if n = dim(V ) = 4 there are no possible sums with
d = n − 3. If n = 5, dim(W◦) = 2 and consequently dim(U◦) = 2, since
U◦ ⊆W◦. If n ≥ 6, dim(W◦) ≥ 3 and so dim(U◦) can effectively be 2 or 3, with
U◦ = W◦ only for n = 6 and dim(U◦) = 3.
Let us now study matrices λ ∈ H◦. Like the previous case, we can write

λ =
(
A B
C D

)

with A ∈ (F2)3×3, B ∈ (F2)3×(n−3), C ∈ (F2)(n−3)×3 and D ∈ (F2)(n−3)×(n−3).
Again, Lemma 5.29 immediately implies C = 0 (and consequently A and D
invertible) and U◦D = U◦. This first part is independent from dim(U◦). Now
we want to investigate deeper each of the two cases, in order to obtain necessary
and sufficient conditions for λ to belong to H◦.

Observation 5.34. Let us focus first on the case dim(U◦) = 2. U◦ is generated
by two error vectors among u12, u13 and u23. We can assume, without loss of
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generality, that u12 and u13 are the two independent vectors, and complete
them to a basis of W◦ {u12, u13, w3, ..., wn−3} with wi ∈ W◦\U◦. Again thanks
to Lemma 5.29, the image of u12 and u13 must be two independent vectors of
U◦; note that we have in total 6 ways to map them, 3 choices for the first one (all
the 3 nonzero vectors in U◦) and 2 for the second one (the 2 remaining nonzero
vectors). On the other hand, the wi must be mapped into W◦\〈U◦, wj〉 for each
j < i (since D must be invertible). The image of u12 and u13 create additional
constraints on the composition of A, since it must satisfy the compatibility
equations

u12λ = e1λ · e2λ,

u13λ = e1λ · e3λ,

u23λ = e2λ · e3λ.

Conversely, if all these constraints are satisfied for λ ∈ (F2)n×n, then λ is
compatible with ◦. Indeed, we need to prove that given x, y ∈ V it holds
(x · y)λ = xλ · yλ. If x ∈ W◦, then, by construction of λ, xλ ∈ W◦, so when
we have a dot product between an element of W◦ and an element outside W◦
both sides of the compatibility equation are zero. For linearity we than have
that (x · y)λ = xλ · yλ if and only if

((x1, x2, x3, 0, ...0) · (y1, y2, y3, 0, ...0))λ = (x1, x2, x3, 0, ...0)λ · (y1, y2, y3, 0, ...0)λ

if and only if it holds for all possible combinations of x = ei and y = ej with
i, j ≤ 3. But these are precisely the three constraints we put on A.
Observation 5.35. Let us now study the case dim(U◦) = 3 instead. Now U◦
is spanned by u12, u13 and u23. Since the dimension of U◦ is now equal to the
dimension of the strong key space, we have an easier way to look at it. For
the block A, we can choose any invertible 3 × 3 matrix. This fixes the image
of e1, e2 and e3 and consequently u12, u13, u23; they are also independent by
linearity, since if for example λu12 +λu13 = 0 then λ(u12 +u13) = 0 and since λ
is also invertible this would imply dim(U◦) = 2. We can then choose like before
{u12, u13, u23, w4, ..., wn−3} as a basis for W◦ and the freedom on D, once A is
fixed, is left from multiple ways to map the wi into W◦\〈U◦, wj〉. It is possible
to work also in the opposite direction: we may fix the image of u12, u13 and
u23, and then A is consequently fixed (we have three independent compatibility
equations). Also in this case, for each mapping of uij we are allowed to freely
map the wi into vectors of W◦\〈U◦, wj〉.
Vice versa, like the previous case, if all these constraints are satisfied for λ ∈
(F2)n×n, then λ is compatible with ◦, since the first part (with the application
of Lemma 5.29) remains unchanged, and for the second one we can once again
restrict ourselves to look at the cases x = ei and y = ej with i, j ≤ 3. These are
exactly the compatibility equations that we impose onD if we start constructing
λ from A or on A if we start from D. This completes the proof of the equivalent
of Theorem 5.15 for the case d = n− 3.
Theorem 5.36. Let λ ∈ (F2)n×n. The following are equivalent:

• λ is compatible with ◦;
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• there exist A ∈ GL((F2)3,+), D ∈ GL((F2)n−3,+), and B ∈ (F2)3×(n−3)

such that
λ =

(
A B

0n−3,3 D

)
and if dim(U◦) = 2 A and D follow the constraints described in Ob-
servation 5.34, if dim(U◦) = 3 they follow the constraints described in
Observation 5.35.

Example 5.37. Theorem 5.36 gives us a quick way to check the dimension of
H◦. Let us check it in some different cases.

• n = 5; in this case, as observed before, the only possible case is dim(U◦) =
dim(W◦) = 2. We have only 6 possibilities for D (3 for the first error and
2 for the second one; in this case no wi are added to form a base), and each
of them through compatibility equations allows 4 different possibilities for
A (by trivial computation) for a total of 24 possible couples (A,D). We
have then 64 possibilities for B (that has no constraints, and size 3 × 2)
for a total of 1536 possible matrices in H◦.

• n = 6, dim(U◦) = 2; let us fix (u12, u13, w1) as a basis for W◦, with u12
and u13 a basis for U◦. Like before, u12 and u13 can be mapped in 6
ways. Each of these 6 ways allows 4 possible A’s like before, since the
compatibility equations does not depend on the image of w1 (thanks to
Remark 5.34). Note that this fact is true also in higher dimensions: for
each D, we will always have 4 possible A’s. Moreover, for each way we still
have 4 possible images for w1 (the size of W◦\U◦) and hence 4 possible
D’s. In conclusion, we have 6*4=24 possibilities for D, and for each D 4
possibilities for A, so 96 possible couples A/D; from the 512 possible B’s
we obtain 49152 different elements in H◦.

• n = 6, dim(U◦) = 3; we have 168 possible A’s, each one fixing the image
of u12, u13, u23. Since these three vectors form a basis for W◦ = U◦, A
fixes D. We have then 512 possibilities for B for a total of 86016 possible
matrices in H◦.

• n = 7, dim(U◦) = 2; let’s fix (u12, u13, w1, w2) as a basis for W◦. We
have 3 possibilities for u12, 2 for u13, then 12 for w1 (W◦\U◦) and finally
8 for w2 (W◦\〈u12, u13, w1〉). We than have 576 possible D’s, with 4 A’s
each (as noted before), 4096 possible B’s for 9437184 possible matrices in
total.

• n = 7, dim(U◦) = 3; again, we have all the possible 168 invertible 3 × 3
matrices for A, and each one fixes u12, u13, u23. We can complete this to
a base for W◦ by adding w4, which have 8 possible images (W◦\U◦) for
a total of 1344 couples A/D. With 4096 B’s we obtain 5505024 possible
elements for H◦.

And so on.
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Remark 5.38. From n = 6, depending on dim(U◦), we have two possible
cardinalities for H◦. This fact, that does not occur if n = 5, implies that we
will have at least two different conjugacy classes for H◦ in higher dimensions,
in accordance with the computation made in [7]. Thanks to that result, we can
also show that conjugacy classes depends only on dim(U◦).

Lemma 5.39. Let T◦ and T� elementary abelian regular subgroups of AGL(V,+)
defining two operations ◦ and � respectively, and such that T� = T g◦ for g ∈
GL(V ). Then H� = Hg

◦ .

Proof. We have that AGL(V, ◦) and AGL(V, �) are the normalizers of T◦ and T�
respectively. Since T� = T g◦ , we have AGL(V, �) = AGL(V, ◦)g and consequently
GL(V, �) = GL(V, ◦)g, being GL(V, ◦) the stabilizer of 0 in AGL(V, ◦). Finally,
the intersection with GL(V,+) is preserved since g ∈ GL(V,+).

Theorem 5.40. Let T◦ and T� elementary abelian regular subgroups of AGL(V,+)
defining two operations ◦ and � respectively such that dim(W◦) = dim(W�) =
n − 3. Then, there exists g ∈ GL(V ) such that T� = T g◦ if and only if
dim(U◦) = dim(U�).

Proof. Up to conjugation, suppose thatW◦ andW� are generated by {e4, ..., en}
and that U◦ and U� are generated by e4, e5 if dim(U◦) = 2 and e4, e5, e6 if
dim(U◦) = 3. This implies that the matrices associated with ei can be written
as (

M◦i 06,n−6
0n−6,6 1n−6

)
,

(
M�i 06,n−6

0n−6,6 1n−6

)
respectively, with M◦i and M�i are 6×6 matrices, since columns from 4 to n are
made by elements of U◦ and so are 0 from the 7th component. Moreover, for
i > 3 M◦i is the identity as usual. We can then consider this sum as composed
by two parallel sums, the first one acting on the first six components and defined
by M◦i and M�i and the second one acting on the last n− 6 components being
the usual XOR (its matrices are all identities).
Now call T ◦ and T � the translation groups associated to the alternative sum
defined my M◦i and M�i . Thanks to the classification made in [7] we know
that for n = 6 and d = 3 we have two conjugacy classes. Moreover, thanks to
Lemma 5.39 and Example 5.37 these two conjugacy classes corresponds exactly
to the two cases dim(U◦) = 2 and dim(U◦) = 3. If we denote by U◦ the
set of error associated by the operation defined by T ◦, this means that, since
dim(U◦) = dim(U�) (U◦ is left fixed by our restriction by construction) there
exist g ∈ GL6(V ) such that T � = T

g
◦. By taking

g =
(

g 06,n−6
0n−6,6 1n−6

)

we have T� = T g◦ as required.

Corollary 5.41. Given two sum ◦ and � with dim(W◦) = dim(W�) = n − 3,
the corresponding groups of compatible maps H◦ and H� are conjugated by g ∈
GL(V ) if and only if dim(U◦) = dim(U�).
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Proof. It follows from application of Lemma 5.39 to Theorem 5.40.

5.4 Parallel Sums

As we already seen in Section 2.2, the S-boxes act in parallel on j components
of V each and then the mixing layer operates at the same time on all the
components, with the goal of spreading differences activating as many S-boxes
as possible. For this reason, we want to focus on sums (and hence differences)
acting in parallel like S-boxes, in order to obtain conditions for the linearity
of the mixing layer λ with respect to these kind of sums. In this way, we can
exploit known properties of alternative sums in low dimension (e.g. targeting
4 bit S-boxes) while attacking a bigger cipher, composed by different parallel
components. For this reason, we use for each parallel component an alternative
sum with d = n − 2, which is the best known and most promising setting.
Like the case d = n − 3, our main targets are Theorems 5.30 and 5.28. While
the second result is just a parallelization of the one [7] present in the classic
setting, for the first one we obtain different conditions on matrices λ and more
specifically we are allowed to modify in a certain sense the condition C = 0 we
had in the standard n−2 case. The fact that we must use λ with a big bottom-
left zero block has as a consequence that often a cipher vulnerable with respect
to our alternative sum was also vulnerable to different standard attacks, thus
destroying our advantage. Removing that condition gives us the opportunity
to outperform results obtained considering just a single sum.

5.4.1 Two parallel sums

We start our study with a sum operating on two parallel blocks, of n components
each. Let V = (F2)2n, x, y ∈ V and denote by x1 and x2 the first and the last
n components of x and y respectively. We want to define ◦ such that(

x1
x2

)
◦
(
y1
y2

)
=
(
x1 ◦1 y1
x2 ◦2 y2

)
.

Most of our general setting can be transposed to this kind of sum with slight
modification. For example, if we take ◦1 and ◦2 as in Theorem 5.10, since
standard +-translation naturally acts in parallel (on each component) we obtain
for a generic element x the same equation τx = Mxσx, with

Mx =
(
M◦1
x1 0

0 M◦2
x2

)

where M◦1
x1 ,M

◦2
x2 are the matrices defined in Theorem 5.10 for x1 with sum ◦1

and x2 with sum ◦2 respectively. Of course in this case the weak key space
is spanned by the 2d components going from n − d to n and from 2n − d
to 2n. Thanks to Theorem 5.13, also our new ◦ operation can be stored with
(n−d−1)(n−d) values with a matrix Θi for each ◦i and computed in polynomial
time.
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From now on, we focus on the case d = n − 2 for both ◦1 and ◦2. As already
observed, this gives us access to many useful tools that we can apply on each
parallel component. What is left to us is to understand how this components
interact with each other. Due to the structure of our sum it is quite simple to
obtain an analogous of Theorem 5.28.

Theorem 5.42. Let ◦, � be two parallel operation, defined by ◦1, ◦2 and �1, �2
respectively, such that for all ◦i, �i it holds dim(W ) = n− 2. Then, there exists
g ∈ GL(V ) such that T� = T g◦ .

Proof. Thanks to Theorem 5.28 applied to each of the two sums, we obtain
two permutation matrices P1 sending ◦1 into �1 and P2 sending ◦2 into �2 via
conjugation. We can thus build a matrix

P =
(
P1 0

0 P2

)

that sends ◦ into � in the same way, since we can write all the Mx in the form
given above.

Corollary 5.43. Let H◦ = GL(V,+)∩GL(V, ◦) and H� = GL(V,+)∩GL(V, �),
with ◦ and � as above. Then H� = Hg

◦ for g ∈ GL(V,+) given by Theorem 5.42.

Proof. Since AGL(V, ◦) is the normalizer of T◦ and T� = T g◦ , we have AGL(V, �) =
AGL(V, ◦)g and consequently GL(V, �) = GL(V, ◦)g, being GL(V, ◦) the stabi-
lizer of 0 in AGL(V, ◦). Finally, the intersection with GL(V,+) is preserved
since g ∈ GL(V,+).

Thanks to Corollary 5.43 we can restrict, up to conjugation, to the case
◦1 = ◦2. Now

Θ =
(
0 b
b 0

)
,

with b ∈ (F2)d, is enough to completely characterize our ◦ sum. What we want
to obtain now is an equivalent of Theorem 5.30 that will give us a characteri-
zation of H◦. A little preliminar work is needed. As observed above the weak
key space for the first sum, that we will denote by W◦,1, is spanned by the com-
ponents from 3 to n of our space, while the second one (W◦,2) is spanned by
components from n+3 to 2n. The definition of weak key space is itself parallel,
since it involves only two parallel operations (◦ and +). For this reason, it is
clear that it holds W◦ = W◦,1

⊕
W◦,2. For the same reason, applying Theorem

5.15 to our case we obtain that U◦ is generated by u1 = (0, 0,b, 0, 0,0) and
u2 = (0, 0,0, 0, 0,b) and hence it also holds U◦ = U◦,1

⊕
U◦,2.

Lemma 5.44. For each λ ∈ H◦, it holds W◦λ = W◦ and U◦λ = U◦.

Proof. It follows directly from Lemma 5.29 (the proof is exactly the same in
the parallel case).
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Theorem 5.45. Let λ ∈ (F2)2n×2n. Then λ is compatible with ◦ if and only if

λ =


A1 B1
C1 D1

A2 B2
C2 D2

A3 B3
C3 D3

A4 B4
C4 D4

 ,
with

1. Ai ∈ (F2)2×2 such that either A1, A4 = 0 and A2, A3 are invertible or vice
versa A2, A3 = 0 and A1, A4 are invertible;

2. Bi ∈ (F2)2×n−2

3. Ci = 0n−2×2

4. Di ∈ (F2)n−2×n−2 such that either bD1 = bD4 = b and bD2 = bD3 = 0
or vice versa bD1 = bD4 = 0 and bD2 = bD3 = b, following the pattern
of Ai (i.e. if A2, A3 are invertible bD2 = bD3 = b). Moreover, the matrix
D defined by

D :=
(
D1 D2
D3 D4

)
must be invertible.

Proof. (⇒) Since, from Lemma 5.44, W◦λ = W◦ and W◦ is spanned by vectors
from 3 to n and from n+ 3 to 2n, we must have Ci = 0. Moreover, the matrix
D defined above must send W◦ into W◦ and hence be invertible.
Let’s now study blocks Ai. Except from the error part (components from 3
to n and from n + 3 to 2n), which can be added to the image since it always
become zero after applying dot product due to the definition of weak key space
and the dot product itself, we observe that span {e1, e2} can remain fixed or
be switched with span {en+1, en+2}. Other linear combinations of these spaces
are not possible. To see this, suppose that e1λ = e1 + en+1 (other cases are
equivalent). For linearity with respect to · we obtain

0 = (e1 · en+1)λ = e1λ · en+1λ

which implies that en+1λ must have components 2 and n + 2 equals to zero,
since they will produce non-zero errors when dotted against e1 + en+1. We
also have 0 = e1λ · en+2λ and so the same holds for en+2. Since W◦ is left
fixed, we have that e2λ must generate components 2 and n + 2 in the image
space, being λ invertible, and this is impossible. So there are two possible
cases. If span {e1, e2} and span {en+1, en+2} are mapped to themselves, we
have A2, A3 = 0 and A1, A4 invertible. If they are switched we have A2, A3
invertible and A1, A4 = 0.
Again from Lemma 5.44 we have U◦λ = U◦. Moreover, from the previous point
we have

u1λ = (e1 · e2)λ = e1λ · e2λ

62



which is u1 in the first case and u2 in the second. From the shape of u2 the
constraints on Di follows.
(⇐) If x ∈W◦, then xλ ∈W◦, so when we have a dot product between an ele-
ment ofW◦ and an element outsideW◦ both sides of the compatibility equation
are zero. For instance

0 = (e1 · e3)λ = e1λ · e3λ = 0.

Inside W◦ the equation holds again by definition of W◦. We can restrict our-
selves by linearity to check (e1 · en+1)λ = e1λ · en+1λ and (e1 · e2)λ = e1λ · e2λ.
In the first case, we observe that the left side is zero by definition of ·, while
the right side is zero by construction of Ai, which sends e1 and en+1 to different
blocks of the parallel sum (as observed before), thus sending their dot product
to zero. Hence the equation holds. In the second case, e1 ·e2 = u1, and both e1λ
and e2λ are sent to the same block of the parallel sum, leading to e1λ ·e2λ = u1
if A1 is invertible, e1λ · e2λ = u2 if A1 is zero. But if A1 is invertible, bD1 = b
and so u1λ = u1; otherwise u1λ = u2. In both cases, the equation holds.

5.4.2 m parallel sums

Most of the results obtained above does not exploit the fact that we are using
two sums, and can be easily generalized to the case with m parallel sums.
Let V = (F2)m×n, and let x ∈ V . We split x in m vectors x1, ..., xm of n
components each. We want to study a sum ◦ such thatx1

...
xm

 ◦
 y1

...
ym

 =

 x1 ◦1 y1
...

xm ◦m ym

 .
Like the case of two sums every element x defines the corresponding translation
τx = Mxσx, with

Mx =

M
◦1
x1 · · · 0
... . . . ...
0 · · · M◦mxm


where M◦ixi are the matrices defined in Theorem 5.10 for xi with sum ◦i. Re-
stricting again to the case d = n − 2, we easily obtain also the equivalent of
Theorem 5.42 and 5.43.

Theorem 5.46. Let ◦, � be two parallel operation, defined by ◦1, ..., ◦m and
�1, ..., �m respectively, such that for all ◦i, �i it holds dim(W (T )) = n − 2.
Then, there exists g ∈ GL(V ) such that T� = T g◦ .

Corollary 5.47. Let H◦ = GL(V,+)∩GL(V, ◦) and H� = GL(V,+)∩GL(V, �),
with ◦ and � as above. Then H� = Hg

◦ .

This allows us to restrict again, up to conjugation, to the case ◦1 = ... = ◦m,
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characterized by b ∈ (F2)d and

Θ =
(
0 b
b 0

)
.

It is now convenient to introduce some new notation. First of all, we slightly
change the numeration of components. Let e1

1 the first basis vector of the first
parallel space (e1), e1

2 the second one, and so on up to e1
n. e2

1, ..., e
2
n will be

the component of the second parallel space, with e2
1 = en+1 in the standard

notation. This goes on until the last parallel space, whose components are
em1 , ..., e

m
n (instead of em(n−1)+1, ..., emn). We can also numerate the parallel

spaces, with Vi which is spanned by components eij for j = 1, ..., n. Our ◦
sum is acting on every Vi. We assumed that this sum has a weak key space
spanned by the last n − 2 components, and this is true for each one of the Vi.
We may then define the i-th weak key space W◦,i spanned by ei3, ..., ein and call
for brevity the i-th strong key space the subspace generated by components ei1
and ei2. We also write

x = (x1, x̃1, ..., xm, x̃m)

where xi are the components in the i-th strong key space we just defined, and
x̃i are the ones in the i-th weak space. Finally, we call x̃ = (x̃1, ..., x̃m) the
vector made of the weak part of each parallel component, and x = (x1, ..., xm)
the one made of the strong parts.
In this setting, Lemma 5.44 clearly holds with no modifications. We can again
obtain a generalization of Theorem 5.45, with only small differences from the
case with only two sums.

Theorem 5.48. Let λ ∈ (F2)(n×m)×(n×m). Then λ is compatible with ◦ if and
only if it can be splitted in blocks

λ =


A11 B11
C11 D11

· · · A1m B1m
C1m D1m

... . . . ...
Am1 Bm1
Cm1 Dm1

· · · Amm Bmm
Cmm Dmm

 ,

with

1. Aij ∈ (F2)2×2 such that for each row and each column there is one and
only one non-zero Aij; moreover, all the non-zero Aij must be invertible

2. Bij ∈ (F2)2×(n−2)

3. Cij = 0(n−2)×2

4. Dij ∈ (F2)(n−2)×(n−2) such that if Aij is zero bDij = 0, and if Aij is

64



invertible bDij = b. Moreover, the matrix D defined by

D :=

D11 · · · D1m
... . . . ...

Dm1 · · · Dm


must be invertible.

Proof. (⇒) Again from Lemma 5.44 W◦λ = W◦ implies Cij = 0. As a conse-
quence, W◦ is generated by x̃D, hence D must be invertible.
Let us now focus on Aij . The argument used in the proof of Theorem 5.45 al-
lows us to prove that every vector with one non-zero strong component xi will
be sent by λ in a vector y with one and only one non-zero strong component
xj . Let us see how. We know that in general ej · ek = 0 (here by ej we denote
a generic vector in the j-th strong space, which can be ej1, e

j
2, e

j
1 + ej2). This

implies that ejλ · ekλ = 0 for each j 6= k. Since we are studying the Aij , we
only focus on strong spaces. Let us suppose that the strong space components
of the image of ej through λ are not contained into a single subspace Vi, but
into some of them. Without loss of generality, we may suppose that they are
included into two subspaces Vk1 and Vk2 . The dimension of the image of ej
is two, while the dimension of the whole subspace spanned by ek1 and ek2 is
four. For this reason, we need at least one other subspace ek whose image is
contained in ek1 and different from the image of ej . This implies that for some
vectors it will result ejλ · ekλ 6= 0, which is absurd. As a consequence, if ei is
mapped into ej , Aij must be invertible, while all the Aik and Alj are zero for
k 6= j and l 6= i.
The conditions on Dij are the same of the case with two sums, and in the same
way follows directly from the ones on the Aij . Indeed, if ei1 and ei2 are sent to
a single subspace ej , the same is true for ui = ei1 · ei2. Applying Lemma 5.44 it
must be bDij = b and bDik = bDlj = 0 for each k 6= j, l 6= i.
(⇐) For the vice-versa, notice that in the proof of Theorem 5.45 we never ex-
ploited the fact that we had just two sums. For linearity, we may restrict our-
selves to check only two cases, which are the same of Theorem 5.45: (ej1 ·e

j
2)λ =

ej1λ·e
j
2λ (vectors coming from the same strong subspace) and (ej1·ek2)λ = ej1λ·ek2λ

(vectors coming from different subspaces). Both equations are satisfied thanks
to the structure of λ, as already shown in the previous proof.
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Chapter 6

Analysis of Optimal 4-bit
S-boxes

In this last chapter, we will show in greater detail what we suggested in Section
4.2, i.e. that our alternative sums are capable of significantly increase the differ-
ential uniformity of S-boxes. Our target will be the optimal 4-bit S-boxes pre-
sented in Chapter 3. Recall that we obtained 16 out of 302 equivalence classes
of optimal permutations, and that we were able to do so thanks to Proposition
1.80 which stated that differential uniformity is invariant under affine equiva-
lence. However, this is not true in general for ◦-differential uniformity, since
the affine equivalence we considered was obtained through linear maps with
respect to +. We are then left with 16 classes of optimal permutations, each
one actually composed by about 236 single permutations, with (potentially) dif-
ferent ◦-differential uniformity. Of course extensive computation of differential
properties of this much S-boxes is not feasible. Some preliminary work is hence
required.
Since we are dealing with 4-bit S-boxes (and so n = 4), our natural choice is a
sum ◦ such that d = n−2 = 2. First of all, this is suggested from the aforemen-
tioned considerations about the optimality of this case. Moreover, notice that
4-bit maps are not likely to be used a cipher themselves, but instead to con-
stitute a parallel confusion layer. Thanks to Section 5.4, we already know how
sums with d = n− 2 behave when put to work in parallel. For n = 4, we have
to choose among 105 sums for d = n− 2. Notice that the fact, extensively used
through all this work, that those sums are conjugated each other is of no help
here. However, we may restrict for now to consider only sums characterized in
Theorem 5.10; we are then only left with the choice of b ∈ {(0, 1), (1, 0), (1, 1)},
i.e. with three possible sums. Let us for now fix one of them, for example the
one corresponding to b = (1, 0). Our goal is to somehow replicate the result of
[22], avoiding the repeated computation of functions that have the same DDT
with respect to both the classic + sum and our ◦ one.

Proposition 6.1. Given f a permutation on V and g1, g2 ∈ GL(V, ◦) it holds

δ◦g1·f ·g2(a, b) = δ◦f (g2(a), g−1
1 (b))

67



Proof. Given g1, g2 ∈ GL(V, ◦) we have

δ◦g1·f ·g2(a, b) = # {g1 · f · g2(x ◦ a) ◦ g1 · f · g2(x) = b} =

#
{
f(g2(x) ◦ g2(a)) ◦ f(g2(x)) = g−1

1 (b)
}

because both g1 and g2 are linear with respect to ◦. Since g2 ∈ GL(V, ◦), g2(x)
goes through all the elements of V and can hence be replaced by x. We obtain

δ◦g1·f ·g2(a, b) = δ◦f (g2(a), g−1
1 (b))

which is the desired equation.

Since H◦(V ) ⊆ GL(V, ◦), Proposition 6.1 holds for every g ∈ H◦. As a
consequence, multiplying on the left or on the right a function for an element
g ∈ H◦ preserves δ◦-differential uniformity as well as the δ+-differential unifor-
mity, since it also holds H◦(V ) ⊆ GL(V,+). Moreover, from the proof of this
proposition we get the extra property that when multiplying by elements in H◦
the rows of DDT ◦ are shuffled, but the highest elements of each row remain
unchanged, with the only difference that the max of row a now becomes the
max of row g2(a) and so on. This fact can be very useful, since we are mainly
interested in the highest differential (δ◦(f)), but there may be other extremely
high differentials on other rows which can considerably empower our attack.

Proposition 6.2. Given σc a translation on V (with respect to XOR) and f a
permutation of V then f, σc ·f and f ·σc have the same differential δ-uniformity
with respect to ◦.

Proof. Since the sum ◦ is defined by a translation group T◦ < AGL(V,+) such
that T+ < AGL(V, ◦), for each XOR translation σc there exists Mc ∈ GL(V, ◦)
such that σc = Mcτc, with τc translation with respect to ◦.
We have fσc(x) = f(xMcτc), but sinceMc ∈ GL(V, ◦) xMc goes through all the
elements of V and can be replaced by x without altering the DDT as observed
before. The differential uniformity equation becomes f((x ◦ a)τc) ◦ f(xτc) =
f(x ◦ c ◦ a) ◦ f(x ◦ c). We can now replace x ◦ c with x, again with no effect on
the DDT since τc is a translation.
On the other hand, σcf = Mcτcf but since Mc is linear with respect to ◦ we
can multiply the whole equation by M−1

c moving the effect on the b’s. We
then obtain the same DDT with the columns shuffled. The equation becomes
f(x ◦ a) ◦ c ◦ f(x) ◦ c = f(x ◦ a) ◦ f(x), which is the equation for f .

Proposition 6.2 exploits the requirements we imposed on our sum in order
to get rid of translations in affine equivalence. Thanks to this, we can reduce
our inspection of the optimal class represented by f to elements of the form
g1 · f · g2 for g1, g2 ∈ GL(V,+). Merging this result with Proposition 6.1 we can
furthermore restrict to choose g1 and g2 in GL(V,+) quotiented by H◦. Finally,
for each of the 16 optimal S-boxes we are left to check only 10816 permutations,
which is absolutely affordable. Notice that for each different ◦ sum, also the
automorphism group H◦ end hence the maps g1 and g2 that we must consider
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are different.
All these computation are made through the MAGMA Software [4]. Moreover,
the implementation of optimal S-boxes is due to [20]; for this reason, the equiv-
alence classes are denoted by Pn, following the numeration given in [20], and
the chosen representatives are different but affine equivalent to the ones given
above. These are the hexadecimal description of the maps used:

0 1 2 3 4 5 6 7 8 9 A B C D E F
P16 0 1 2 B 4 C 9 F 8 5 D 6 7 3 E A
P20 0 1 2 7 4 3 B D 8 6 C E 5 A F 9
P35 0 1 2 B 4 C D F 8 5 9 6 3 7 E A
P102 0 1 2 C 4 E F 9 8 5 D 7 6 3 A B
P128 0 1 2 5 4 B A 6 8 C E D F 9 3 7
P220 0 1 2 C 4 6 F 9 8 D B 3 E 5 7 A
P227 0 1 2 E 4 C 7 F 8 B 6 D 3 9 A 5
P243 0 1 2 A 4 3 C 9 8 F E 6 D 7 5 B
P245 0 1 2 A 4 3 7 B 8 5 C D F 9 6 E
P249 0 1 2 5 4 7 A F 8 3 6 B 9 C D E
P254 0 1 2 6 4 C 9 5 8 F D 3 E B 7 A
P262 0 1 2 B 4 E F D 8 5 6 9 3 7 C A
P267 0 1 2 3 4 E A D 8 6 C 5 B F 7 9
P275 0 1 2 6 4 D A 7 8 C E F 3 B 9 5
P280 0 1 2 D 4 9 5 3 8 C E A B 7 6 F
P296 0 1 2 E 4 A 7 F 8 5 9 D 6 C B 3

The results obtained are summarized in Tables 6.1, 6.2 and 6.3 at the end of this
chapter. Each row represents an S-box, while each column contains the number
of permutations affine equivalent to that S-box with a specific δ◦-differential
uniformity. We can consider these as overall good results. Surprisingly, for
each sum some optimal S-boxes become 16-uniform, which is great. In many
other cases, we at least managed to obtain 12-uniformity. Since, as already
explained, difference may come out from the key addition layer either unchanged
or modified by a single error (the only non zero element of U◦, which in our
setting is the vector (0, 0,b)) it is probably more appropriate to compare the
standard δ-differential uniformity of an S-box with the half of its δ◦-differential
uniformity. Anyway, being able to pass from 4 to 6 and sometimes even to 8 is
a significant improvement.
We conclude by showing two concrete examples of good DDT ◦ computations,
together with the description of maps used to generate them. For each one,
i, g1 and g2 are given. The S-box is then obtained by composition as g1Pig2,
where Pi is one of the optimal permutations listed above. The sum considered
in both is the one corresponding to b = (1, 0).

Example 6.3. For this first example, we will see a 16-uniform S-box. It is
affine equivalent to the optimal permutation P102 through the maps g1 and g2
defined by
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0 1 2 3 4 5 6 7 8 9 A B C D E F
g1 0 B 4 F 8 3 C 7 6 D 2 9 E 5 A 1
g2 0 D F 2 4 9 B 6 3 E C 1 7 A 8 5

And its DDT ◦ is listed below.

◦ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 · · · · · · · · · · · · · · ·
1 · · · · 4 4 4 4 · · · · · · · ·
2 · · · · 4 · · 4 4 · · 4 · · · ·
3 · 4 4 · · · · · · · · · · 4 4 ·
4 · 4 · 4 · · · · · · · · · 4 · 4
5 · · · · · 4 · 4 4 · 4 · · · · ·
6 · · · · · · 4 4 · · 4 4 · · · ·
7 · · 4 4 · · · · · · · · · · 4 4
8 · · · · 4 4 · · 4 4 · · · · · ·
9 · · 4 4 · · · · · · · · · · 4 4
A · 4 · 4 · · · · · · · · · 4 · 4
B · · · · 4 · 4 · · 4 · 4 · · · ·
C · · · · · · · · · · · · 16 · · ·
D · · · · · · · · 4 4 4 4 · · · ·
E · · · · · 4 4 · · 4 4 · · · · ·
F · 4 4 · · · · · · · · · · 4 4 ·

It means that any time we have two input whose ◦ difference is 1100, no matter
what the inputs are, the ◦ difference between the outputs will always be 1100.
Notice that in general it is not required that the input difference it is equal to
the output difference.

Example 6.4. Our second example targets an S-box affine equivalent to P16,
through the maps

0 1 2 3 4 5 6 7 8 9 A B C D E F
g1 0 C 4 8 1 D 5 9 2 E 6 A 3 F 7 B
g2 0 B 7 C 9 2 E 5 6 D 1 A F 4 8 3

Its DDT ◦ is then
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◦ 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 · · · · · · · · · · · · · · ·
1 · · · · · 4 · · · · · 4 · 8 · ·
2 · · · 2 · · 2 · 2 4 · · · · 4 2
3 · · 2 4 · · 4 2 · 2 · · · · 2 ·
4 · · · · 8 4 · · · · · 4 · · · ·
5 · · · · · · · · · · · 8 8 · · ·
6 · · 2 · · · · 2 4 2 · · · · 2 4
7 · · 4 2 · · 2 4 2 · · · · · · 2
8 · · 4 2 · · 2 4 2 · · · · · · 2
9 · · 2 · · · · 2 4 2 · · · · 2 4
A · 4 · · · · · · · · · · 8 4 · ·
B · 8 · · 4 · · · · · 4 · · · · ·
C · · · · 4 · · · · · 12 · · · · ·
D · 4 · · · 8 · · · · · · · 4 · ·
E · · 2 4 · · 4 2 · 2 · · · · 2 ·
F · · · 2 · · 2 · 2 4 · · · · 4 2

We see that it is 12-uniform. Moreover, remarkably 6 rows have a maximum
value of 8. This fact may help a lot when mounting a differential attack, since
we can explore many different trails with high probability. Finally, we see that
the differential table is sparse, i.e. there are few nonzero values. This gives us
a greater control on ◦-difference propagation through this S-box.

Table 6.1: δ◦-differential uniformity of optimal S-boxes; ◦ is defined by b =
(0, 1)

2 4 6 8 10 12 14 16
P16 0 1124 7052 2463 141 36 0 0
P20 0 1112 7433 2123 148 0 0 0
P35 0 1077 7104 2452 147 36 0 0
P102 0 681 6935 2825 363 0 0 12
P128 0 918 7757 1956 173 12 0 0
P220 0 890 7561 2217 148 0 0 0
P227 0 1116 7091 2410 151 48 0 0
P243 0 1127 7093 2399 151 46 0 0
P245 0 903 7611 2153 131 18 0 0
P249 0 840 6571 3058 297 40 0 10
P254 0 1081 7269 2311 155 0 0 0
P262 0 782 6662 2985 359 16 0 12
P267 0 1188 7284 2184 160 0 0 0
P275 0 776 6712 2947 353 16 0 12
P280 0 806 7990 1804 216 0 0 0
P296 0 1105 7771 1824 116 0 0 0

71



Table 6.2: δ◦-differential uniformity of optimal S-boxes; ◦ is defined by b =
(1, 0)

2 4 6 8 10 12 14 16
P16 0 1117 7050 2472 141 36 0 0
P20 0 1114 7439 2111 152 0 0 0
P35 0 1072 7115 2444 149 36 0 0
P102 0 676 6916 2833 379 0 0 12
P128 0 923 7768 1936 177 12 0 0
P220 0 889 7563 2216 148 0 0 0
P227 0 1112 7094 2413 149 48 0 0
P243 0 1128 7097 2396 147 48 0 0
P245 0 903 7649 2109 135 20 0 0
P249 0 853 6510 3094 299 48 0 12
P254 0 1094 7279 2288 155 0 0 0
P262 0 778 6680 2969 361 16 0 12
P267 0 1205 7296 2159 156 0 0 0
P275 0 784 6740 2921 347 14 0 10
P280 0 815 7996 1793 212 0 0 0
P296 0 1109 7771 1816 120 0 0 0

Table 6.3: δ◦-differential uniformity of optimal S-boxes; ◦ is defined by b =
(1, 1)

2 4 6 8 10 12 14 16
P16 0 1123 7051 2467 139 36 0 0
P20 0 1117 7432 2117 150 0 0 0
P35 0 1064 7105 2462 149 36 0 0
P102 0 676 6976 2793 361 0 0 10
P128 0 907 7740 1982 175 12 0 0
P220 0 894 7554 2222 146 0 0 0
P227 0 1121 7089 2413 145 48 0 0
P243 0 1114 7086 2419 149 48 0 0
P245 0 896 7627 2144 129 20 0 0
P249 0 865 6571 3040 282 48 0 10
P254 0 1091 7263 2309 153 0 0 0
P262 0 766 6722 2953 347 16 0 12
P267 0 1205 7296 2159 156 0 0 0
P275 0 785 6705 2953 347 14 0 12
P280 0 812 7991 1799 214 0 0 0
P296 0 1105 7771 1824 116 0 0 0
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