

Multiplication polynomials for elliptic curves over finite local rings

Riccardo Invernizzi

Joint work with Daniele Taufer ISSAC 2023 Tromsø, July 27th

0 Outline

1 Introduction

- **2** Our setting
- **3** Multiplication polynomials
- 4 Consequences

1 Outline

1 Introduction

- Our setting
- **3** Multiplication polynomials
- 4 Consequences

1 Elliptic curves

Definition

An elliptic curve E is the set of points $(X : Y : Z) \in \mathbb{P}^2(\mathbb{K})$ satisfying a Weierstrass equation, i.e.

$$y^{2}z + a_{1}xyz + a_{3}yz^{2} = x^{3} + a_{2}x^{2}z + a_{4}xz^{2} + a_{6}z^{3}$$

for some field $\mathbb{K}(\mathbb{F}_p)$ such that $\Delta_E \neq 0$.

1 Elliptic curves

Definition

An elliptic curve E is the set of points $(X : Y : Z) \in \mathbb{P}^2(\mathbb{K})$ satisfying a Weierstrass equation, i.e.

$$y^{2}z + a_{1}xyz + a_{3}yz^{2} = x^{3} + a_{2}x^{2}z + a_{4}xz^{2} + a_{6}z^{3}$$

for some field $\mathbb{K}(\mathbb{F}_p)$ such that $\Delta_E \neq 0$.

Remark

If $\operatorname{char}(\mathbb{K}) \notin \{2,3\}$ we can work with the short Weierstrass equation

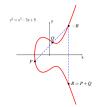
$$y^2z = x^3 + Axz^2 + Bz^3,$$

without loss of generality.

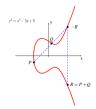
 An elliptic curve is equipped with an abelian group structure;

- An elliptic curve is equipped with an abelian group structure;
- O = (0:1:0) is the zero;

- An elliptic curve is equipped with an abelian group structure;
- O = (0:1:0) is the zero;
- the sum is usually defined via the chord-tangent method.



- An elliptic curve is equipped with an abelian group structure;
- O = (0:1:0) is the zero;
- the sum is usually defined via the chord-tangent method.



Theorem

Let p be a prime number, and E an elliptic curve defined over \mathbb{F}_p . There are positive integers $n, k \in \mathbb{Z}_{\geq 1}$ such that n|(p-1) and

$$E(\mathbb{F}_p) \cong \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/nk\mathbb{Z}.$$

Let E be an elliptic curve over \mathbb{F}_p .

Let E be an elliptic curve over \mathbb{F}_p .

• Given $P \in E$ and $n \in \mathbb{N}$, computing Q = nP is easy $(\log(n) \text{ steps using double & add})$;

Let E be an elliptic curve over \mathbb{F}_p .

• Given $P \in E$ and $n \in \mathbb{N}$, computing Q = nP is easy $(\log(n) \text{ steps using double & add});$

given P and Q, recovering n is hard;

Let E be an elliptic curve over \mathbb{F}_p .

• Given $P \in E$ and $n \in \mathbb{N}$, computing Q = nP is easy $(\log(n) \text{ steps using double & add})$;

• given P and Q, recovering n is hard;

this is known as the Discrete Logarithm Problem (or ECDLP);

Let E be an elliptic curve over \mathbb{F}_p .

- Given $P \in E$ and $n \in \mathbb{N}$, computing Q = nP is easy $(\log(n) \text{ steps using double & add})$;
- given P and Q, recovering n is hard;
- this is known as the Discrete Logarithm Problem (or ECDLP);
- many modern cryptosystems (including WhatsApp and TLS) are based on ECDLP.

2 Outline

Introduction

2 Our setting

- 3 Multiplication polynomials
- 4 Consequences

We focus on finite local rings;

We focus on finite local rings;

• in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon];$

- We focus on finite local rings;
- ▶ in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;

- We focus on finite local rings;
- ▶ in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- ▶ for a projective point $P = (X : Y : Z) \in E(R_k)$, we define its standard form as

- We focus on finite local rings;
- ▶ in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon];$
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- ▶ for a projective point $P = (X : Y : Z) \in E(R_k)$, we define its standard form as
 - $(X \cdot Z^{-1} : Y \cdot Z^{-1} : 1)$ if $Z \in R_k^*$,

- We focus on finite local rings;
- ▶ in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- ▶ for a projective point $P = (X : Y : Z) \in E(R_k)$, we define its standard form as
 - $(X \cdot Z^{-1} : Y \cdot Z^{-1} : 1)$ if $Z \in R_k^*$,
 - $(X \cdot Y^{-1} : 1 : Z \cdot Y^{-1})$ if $Z \notin R_k^*$, $Y \in R_k^*$;

- We focus on finite local rings;
- ▶ in this presentation, we consider $R_k := \mathbb{F}_p[x]/x^k \cong \mathbb{F}_p[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- ▶ for a projective point $P = (X : Y : Z) \in E(R_k)$, we define its standard form as
 - $(X \cdot Z^{-1} : Y \cdot Z^{-1} : 1)$ if $Z \in R_k^*$,
 - $(X \cdot Y^{-1} : 1 : Z \cdot Y^{-1})$ if $Z \notin R_k^*$, $Y \in R_k^*$;
- ► the third case (i.e. X ∈ R^{*}_k, Y, Z ∉ R^{*}_k) cannot happen because of the Weierstrass equation.

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

▶ the induced map $\pi : E(R_k) \to E(\mathbb{F}_p)$ is a surjective group homomorphism;

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

▶ the induced map $\pi : E(R_k) \to E(\mathbb{F}_p)$ is a surjective group homomorphism;

•
$$E^{\infty} := \pi^{-1}(\mathcal{O})$$
 is a *p*-subgroup of $E(R_k)$;

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

▶ the induced map $\pi : E(R_k) \to E(\mathbb{F}_p)$ is a surjective group homomorphism;

•
$$E^{\infty} := \pi^{-1}(\mathcal{O})$$
 is a *p*-subgroup of $E(R_k)$;

▶ all points $P \in E^{\infty}$ are in the second standard form, i.e. P = (X : 1 : Z), with $\epsilon | X, Z$;

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

▶ the induced map $\pi : E(R_k) \to E(\mathbb{F}_p)$ is a surjective group homomorphism;

•
$$E^{\infty} := \pi^{-1}(\mathcal{O})$$
 is a *p*-subgroup of $E(R_k)$;

- ▶ all points $P \in E^{\infty}$ are in the second standard form, i.e. P = (X : 1 : Z), with $\epsilon | X, Z$;
- ▶ for non-anomalous curves (i.e. $\#E(\mathbb{F}_p) \neq p$) it holds

$$E(R_k) \cong E(\mathbb{F}_p) \oplus E^{\infty};$$

• We also define a projection $\pi: R_k \xrightarrow{\mod \epsilon} \mathbb{F}_p$ sending

 $\alpha + \epsilon \beta \mapsto \alpha;$

▶ the induced map $\pi : E(R_k) \to E(\mathbb{F}_p)$ is a surjective group homomorphism;

•
$$E^{\infty} := \pi^{-1}(\mathcal{O})$$
 is a *p*-subgroup of $E(R_k)$;

- ▶ all points $P \in E^{\infty}$ are in the second standard form, i.e. P = (X : 1 : Z), with $\epsilon | X, Z$;
- ▶ for non-anomalous curves (i.e. $\#E(\mathbb{F}_p) \neq p$) it holds

$$E(R_k) \cong E(\mathbb{F}_p) \oplus E^{\infty};$$

 \blacktriangleright we restrict our attention to E^{∞} .

3 Outline

Introduction

- Our setting
- **3** Multiplication polynomials
- 4 Consequences

3 Point sum

Proposition

There exist a polynomial $\mathbf{f} \in R_k[x]$ such that $x^3|\mathbf{f}$, and for every point $P = (X : 1 : Z) \in E^{\infty}$ it holds $Z = \mathbf{f}(X)$.

3 Point sum

Proposition

There exist a polynomial $\mathbf{f} \in R_k[x]$ such that $x^3|\mathbf{f}$, and for every point $P = (X : 1 : Z) \in E^{\infty}$ it holds $Z = \mathbf{f}(X)$.

Corollary

Given $P = (P_x : 1 : P_z)$, $Q = (Q_x : 1 : Q_z) \in E^\infty$ it holds $(P+Q)_x \in \langle P_x, Q_x \rangle.$

In particular, $(nP)_x \in \langle P_x \rangle$.

As a consequence, for $P = (X: 1: {\tt f}(X))$ we can write

$$(nP)_x = \sum_{i=1}^{k-1} \psi_i(n) X^i.$$

As a consequence, for $P = (X: 1: {\tt f}(X))$ we can write

$$(nP)_x = \sum_{i=1}^{k-1} \psi_i(n) X^i.$$

Definition

The *i*-th multiplication polynomial is the unique function $\mathbb{N} \to R_k$ which sends n to $\psi_i(n)$.

As a consequence, for $P = (X: 1: {\tt f}(X))$ we can write

$$(nP)_x = \sum_{i=1}^{k-1} \psi_i(n) X^i.$$

Definition

The *i*-th multiplication polynomial is the unique function $\mathbb{N} \to R_k$ which sends n to $\psi_i(n)$.

Remark

 ψ_i is well defined as a function; it is not clear yet that this should be a polynomial in n.

Remark

It can be shown directly that
$$\psi_1(n) = n$$
, $\psi_2(n) = {n \choose 2}a_1 = \frac{n(n-1)}{2}a_1$.

Remark

It can be shown directly that $\psi_1(n) = n$, $\psi_2(n) = {n \choose 2}a_1 = \frac{n(n-1)}{2}a_1$.

Theorem (I. and Taufer, 2023)

 $\psi_i(n)$ is a degree-*i* polynomial in $\mathbb{Q}[a_1, \ldots, a_6][n]$ with no constant term. Moreover, no primes greater than *i* appears in the denominators of $\psi_i(n)$.

4 Outline

- Introduction
- Our setting
- **3** Multiplication polynomials
- 4 Consequences

4 The jump

We fix p a prime number, $R_k = \mathbb{F}_p[\epsilon]$.

Corollary

For $i \leq p-1$,

 $\psi_i(p) \equiv 0 \bmod p.$

4 The jump

We fix p a prime number, $R_k = \mathbb{F}_p[\epsilon]$.

Corollary

For $i \leq p-1$,

 $\psi_i(p) \equiv 0 \bmod p.$

Proposition

Let $E(R_k)$ be a curve, $P \in E$. It holds

$$(pP)_x \equiv \psi_p(p)X^p \mod X^{p+1}.$$

Definition

For a point $P=(X:1:Z)\in E^\infty$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^i|X.$

Definition

For a point $P=(X:1:Z)\in E^\infty$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^i|X.$

Remark

```
For every P \in E^{\infty} it holds \nu(P) \ge 1.
```


Definition

For a point $P=(X:1:Z)\in E^\infty$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^i|X.$

Remark

```
For every P \in E^{\infty} it holds \nu(P) \ge 1.
```

Proposition

Let $P, Q \in E^{\infty}$. Then

• if
$$\nu(P) \neq \nu(Q)$$
, $\nu(P+Q) = \min(\nu(P), \nu(Q))$;

Definition

For a point $P=(X:1:Z)\in E^\infty$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^i|X.$

Remark

```
For every P \in E^{\infty} it holds \nu(P) \ge 1.
```

Proposition

Let $P, Q \in E^{\infty}$. Then

if
$$\nu(P) \neq \nu(Q)$$
, $\nu(P+Q) = \min(\nu(P), \nu(Q))$;

• if
$$p \nmid n$$
, $\nu(nP) = \nu(P)$;

Definition

For a point $P=(X:1:Z)\in E^\infty$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^i|X.$

Remark

```
For every P \in E^{\infty} it holds \nu(P) \ge 1.
```

Proposition

Let $P, Q \in E^{\infty}$. Then

• if
$$\nu(P) \neq \nu(Q)$$
, $\nu(P+Q) = \min(\nu(P), \nu(Q))$;

• if
$$p \nmid n$$
, $\nu(nP) = \nu(P)$;

•
$$\nu(pP) = p\nu(P)$$
 (assuming $\psi_p(p) \in R_k^*$).

4 Group structure

Lemma

We obtain the following:

•
$$pP = \mathcal{O}$$
 if and only if $p\nu(P) \ge k$;

4 Group structure

Lemma

We obtain the following:

•
$$pP = \mathcal{O}$$
 if and only if $p\nu(P) \ge k$;

▶ $g_i := (\epsilon^i : 1 : f(\epsilon^i))$ for (i, p) = 1 are \mathbb{F}_p -linearly independent.

4 Group structure

Lemma

We obtain the following:

▶
$$pP = O$$
 if and only if $p\nu(P) \ge k$;
▶ $q_i := (\epsilon^i : 1 : f(\epsilon^i))$ for $(i, p) = 1$ are \mathbb{F}_p -linearly independent

Theorem (I. and Taufer, 2023)

Let E be an elliptic curve over R_k s.t. $\#E(\mathbb{F}_p)\neq p$ and $\psi_p(p)\in R_k^*.$ Then

$$E \cong E(\mathbb{F}_p) \times \prod_{\substack{1 \le m \le k-1 \ (m,p)=1}} \mathbb{Z}/p^{l_m}\mathbb{Z}, \text{ where } l_m = \left\lfloor \log_p \frac{k-1}{m} \right\rfloor + 1.$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

$$Q_x \equiv a_1 b_0 \epsilon \bmod \epsilon^2$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

$$Q_x \equiv a_1 b_0 \epsilon \mod \epsilon^2 \Rightarrow \mathbf{b_0} = Q_x^{(1)} \cdot a_1^{-1}$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

$$(Q - b_0 P)_x \equiv a_1' b_1 \epsilon^p \mod \epsilon^{p+1}$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

$$(Q - b_0 P)_x \equiv a_1' b_1 \epsilon^p \mod \epsilon^{p+1} \Rightarrow b_1 = (Q - b_0 P)_x^{(p)} \cdot (a_1')^{-1}$$

Let

$$P_x = a_1\epsilon + a_2\epsilon^2 + \dots + a_{k-1}\epsilon^{k-1}$$

and

$$n = b_0 + b_1 p + b_2 p^2 + \dots + b_d p^d.$$

. . .

Theorem (I. and Taufer, 2023)

It holds

$$b_i = \left(\left(Q - \sum_{j=1}^{i-1} b_j p^j P \right)_x \mod \epsilon^{m_i+1} \right) \Big/ ((p^i P)_x \mod \epsilon^{m_i+1}),$$

where $m_i = \nu(p^i P)$. Over E^{∞} , the discrete logarithm can hence be solved in time $\mathcal{O}(\log(p)\log(n))$. As a consequence, the discrete logarithm over $E(R_k)$ can be efficiently reduced to the corresponding logarithm over $E(\mathbb{F}_p)$.

Thank you for your attention.