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1 Elliptic curves

Definition
An elliptic curve E is the set of points (X : Y : Z) ∈ P2(K) satisfying
a Weierstrass equation, i.e.

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

for some field K (Fp) such that ∆E ̸= 0.

Remark
If char(K) ̸∈ {2, 3} we can work with the short Weierstrass equation

y2z = x3 +Axz2 +Bz3,

without loss of generality.
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1 The group structure

▶ An elliptic curve is equipped with an
abelian group structure;

▶ O = (0 : 1 : 0) is the zero;
▶ the sum is usually defined via the

chord-tangent method.

Theorem
Let p be a prime number, and E an elliptic curve defined over Fp.
There are positive integers n, k ∈ Z≥1 such that n|(p− 1) and

E(Fp) ∼= Z/nZ × Z/nkZ.
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1 The ECDLP

Let E be an elliptic curve over Fp.

▶ Given P ∈ E and n ∈ N, computing Q = nP is easy (log(n)
steps using double & add);

▶ given P and Q, recovering n is hard;
▶ this is known as the Discrete Logarithm Problem (or ECDLP);
▶ many modern cryptosystems (including WhatsApp and TLS) are

based on ECDLP.
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2 Finite local rings

▶ We focus on finite local rings;

▶ in this presentation, we consider Rk := Fp[x]/xk ∼= Fp[ϵ];
▶ the definition of elliptic curve and the addition laws can be

extended to finite local rings;
▶ for a projective point P = (X : Y : Z) ∈ E(Rk), we define its

standard form as

• (X · Z−1 : Y · Z−1 : 1) if Z ∈ R∗
k,

• (X · Y −1 : 1 : Z · Y −1) if Z ̸∈ R∗
k, Y ∈ R∗

k;

▶ the third case (i.e. X ∈ R∗
k, Y, Z ̸∈ R∗

k) cannot happen because
of the Weierstrass equation.
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2 Subgroup at infinity

▶ We also define a projection π : Rk
mod ϵ−−−−→ Fp sending

α+ ϵβ 7→ α;

▶ the induced map π : E(Rk) → E(Fp) is a surjective group
homomorphism;

▶ E∞ := π−1(O) is a p-subgroup of E(Rk);
▶ all points P ∈ E∞ are in the second standard form, i.e.
P = (X : 1 : Z), with ϵ|X,Z;

▶ for non-anomalous curves (i.e. #E(Fp) ̸= p) it holds

E(Rk) ∼= E(Fp) ⊕ E∞;

▶ we restrict our attention to E∞.
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3 Point sum

Proposition
There exist a polynomial f ∈ Rk[x] such that x3|f, and for every
point P = (X : 1 : Z) ∈ E∞ it holds Z = f(X).

Corollary
Given P = (Px : 1 : Pz), Q = (Qx : 1 : Qz) ∈ E∞ it holds

(P +Q)x ∈ ⟨Px, Qx⟩.

In particular, (nP )x ∈ ⟨Px⟩.
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3 Multiplication polynomials

As a consequence, for P = (X : 1 : f(X)) we can write

(nP )x =
k−1∑
i=1

ψi(n)Xi.

Definition
The i-th multiplication polynomial is the unique function N → Rk

which sends n to ψi(n).

Remark
ψi is well defined as a function; it is not clear yet that this should be a
polynomial in n.
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3 Multiplication polynomials

Remark
It can be shown directly that ψ1(n) = n, ψ2(n) =

(n
2
)
a1 = n(n−1)

2 a1.

Theorem (I. and Taufer, 2023)

ψi(n) is a degree-i polynomial in Q[a1, . . . , a6][n] with no constant
term. Moreover, no primes greater than i appears in the denominators
of ψi(n).
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4 The jump

We fix p a prime number, Rk = Fp[ϵ].

Corollary
For i ≤ p− 1,

ψi(p) ≡ 0 mod p.

Proposition
Let E(Rk) be a curve, P ∈ E. It holds

(pP )x ≡ ψp(p)Xp mod Xp+1.
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4 Minimal degree

Definition
For a point P = (X : 1 : Z) ∈ E∞ we define ν(P ) as the minimal i
s.t. ϵi|X.

Remark
For every P ∈ E∞ it holds ν(P ) ≥ 1.

Proposition
Let P,Q ∈ E∞. Then
▶ if ν(P ) ̸= ν(Q), ν(P +Q) = min(ν(P ), ν(Q));

▶ if p ∤ n, ν(nP ) = ν(P );
▶ ν(pP ) = pν(P ) (assuming ψp(p) ∈ R∗

k).
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4 Group structure

Lemma
We obtain the following:
▶ pP = O if and only if pν(P ) ≥ k;

▶ gi := (ϵi : 1 : f(ϵi)) for (i, p) = 1 are Fp-linearly independent.

Theorem (I. and Taufer, 2023)

Let E be an elliptic curve over Rk s.t. #E(Fp) ̸= p and ψp(p) ∈ R∗
k.

Then

E ∼= E(Fp) ×
∏

1≤m≤k−1
(m,p)=1

Z/plmZ, where lm =
⌊
logp

k − 1
m

⌋
+ 1.
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4 The ECDLP

Let
Px = a1ϵ+ a2ϵ

2 + · · · + ak−1ϵ
k−1

and
n = b0 + b1p+ b2p

2 + · · · + bdp
d.

Suppose we know P , Q = nP and want to recover n. Then:
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4 The ECDLP

Theorem (I. and Taufer, 2023)

It holds

bi =

(
Q−

i−1∑
j=1

bjp
jP

)
x

mod ϵmi+1

 /(
(piP )x mod ϵmi+1)

,

where mi = ν(piP ). Over E∞, the discrete logarithm can hence be
solved in time O(log(p) log(n)). As a consequence, the discrete
logarithm over E(Rk) can be efficiently reduced to the corresponding
logarithm over E(Fp).
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Thank you for your attention.
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