KULEUVEN

Multiplication polynomials for elliptic curves over finite local rings

Riccardo Invernizzi

Joint work with Daniele Taufer ISSAC 2023
Tromsø, July 27th

0 Outline

(1) Introduction
(2) Our setting
(3) Multiplication polynomials
(4) Consequences

1 Outline

(1) Introduction
(2) Our setting
(3) Multiplication polynomials
(4) Consequences

1 Elliptic curves

Definition

An elliptic curve E is the set of points $(X: Y: Z) \in \mathbb{P}^{2}(\mathbb{K})$ satisfying a Weierstrass equation, i.e.

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3}
$$

for some field $\mathbb{K}\left(\mathbb{F}_{p}\right)$ such that $\Delta_{E} \neq 0$.

1 Elliptic curves

Definition

An elliptic curve E is the set of points $(X: Y: Z) \in \mathbb{P}^{2}(\mathbb{K})$ satisfying a Weierstrass equation, i.e.

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3}
$$

for some field $\mathbb{K}\left(\mathbb{F}_{p}\right)$ such that $\Delta_{E} \neq 0$.

Remark

If $\operatorname{char}(\mathbb{K}) \notin\{2,3\}$ we can work with the short Weierstrass equation

$$
y^{2} z=x^{3}+A x z^{2}+B z^{3},
$$

without loss of generality.

1 The group structure

- An elliptic curve is equipped with an abelian group structure;

1 The group structure

- An elliptic curve is equipped with an abelian group structure;
- $\mathcal{O}=(0: 1: 0)$ is the zero;

The group structure

- An elliptic curve is equipped with an abelian group structure;
- $\mathcal{O}=(0: 1: 0)$ is the zero;
- the sum is usually defined via the chord-tangent method.

The group structure

- An elliptic curve is equipped with an abelian group structure;
- $\mathcal{O}=(0: 1: 0)$ is the zero;
- the sum is usually defined via the chord-tangent method.

Theorem

Let p be a prime number, and E an elliptic curve defined over \mathbb{F}_{p}. There are positive integers $n, k \in \mathbb{Z}_{\geq 1}$ such that $n \mid(p-1)$ and

$$
E\left(\mathbb{F}_{p}\right) \cong \mathbb{Z} / n \mathbb{Z} \times \mathbb{Z} / n k \mathbb{Z}
$$

1 The ECDLP

Let E be an elliptic curve over \mathbb{F}_{p}.

1 The ECDLP

Let E be an elliptic curve over \mathbb{F}_{p}.

- Given $P \in E$ and $n \in \mathbb{N}$, computing $Q=n P$ is easy $(\log (n)$ steps using double \& add);

1 The ECDLP

Let E be an elliptic curve over \mathbb{F}_{p}.

- Given $P \in E$ and $n \in \mathbb{N}$, computing $Q=n P$ is easy $(\log (n)$ steps using double \& add);
- given P and Q, recovering n is hard;

1 The ECDLP

Let E be an elliptic curve over \mathbb{F}_{p}.

- Given $P \in E$ and $n \in \mathbb{N}$, computing $Q=n P$ is easy $(\log (n)$ steps using double \& add);
- given P and Q, recovering n is hard;
- this is known as the Discrete Logarithm Problem (or ECDLP);

1 The ECDLP

Let E be an elliptic curve over \mathbb{F}_{p}.

- Given $P \in E$ and $n \in \mathbb{N}$, computing $Q=n P$ is easy $(\log (n)$ steps using double \& add);
- given P and Q, recovering n is hard;
- this is known as the Discrete Logarithm Problem (or ECDLP);
- many modern cryptosystems (including WhatsApp and TLS) are based on ECDLP.

2 Outline

(1) Introduction

(2) Our setting

(3) Multiplication polynomials

(4) Consequences

2 Finite local rings

- We focus on finite local rings;

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- for a projective point $P=(X: Y: Z) \in E\left(R_{k}\right)$, we define its standard form as

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- for a projective point $P=(X: Y: Z) \in E\left(R_{k}\right)$, we define its standard form as
- $\left(X \cdot Z^{-1}: Y \cdot Z^{-1}: 1\right)$ if $Z \in R_{k}^{*}$,

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- for a projective point $P=(X: Y: Z) \in E\left(R_{k}\right)$, we define its standard form as
- $\left(X \cdot Z^{-1}: Y \cdot Z^{-1}: 1\right)$ if $Z \in R_{k}^{*}$,
- $\left(X \cdot Y^{-1}: 1: Z \cdot Y^{-1}\right)$ if $Z \notin R_{k}^{*}, Y \in R_{k}^{*}$;

2 Finite local rings

- We focus on finite local rings;
- in this presentation, we consider $R_{k}:=\mathbb{F}_{p}[x] / x^{k} \cong \mathbb{F}_{p}[\epsilon]$;
- the definition of elliptic curve and the addition laws can be extended to finite local rings;
- for a projective point $P=(X: Y: Z) \in E\left(R_{k}\right)$, we define its standard form as
- $\left(X \cdot Z^{-1}: Y \cdot Z^{-1}: 1\right)$ if $Z \in R_{k}^{*}$,
- $\left(X \cdot Y^{-1}: 1: Z \cdot Y^{-1}\right)$ if $Z \notin R_{k}^{*}, Y \in R_{k}^{*}$;
- the third case (i.e. $X \in R_{k}^{*}, Y, Z \notin R_{k}^{*}$) cannot happen because of the Weierstrass equation.

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

- the induced map $\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$ is a surjective group homomorphism;

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

- the induced map $\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$ is a surjective group homomorphism;
- $E^{\infty}:=\pi^{-1}(\mathcal{O})$ is a p-subgroup of $E\left(R_{k}\right)$;

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

- the induced map $\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$ is a surjective group homomorphism;
- $E^{\infty}:=\pi^{-1}(\mathcal{O})$ is a p-subgroup of $E\left(R_{k}\right)$;
- all points $P \in E^{\infty}$ are in the second standard form, i.e. $P=(X: 1: Z)$, with $\epsilon \mid X, Z$;

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

the induced map $\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$ is a surjective group homomorphism;

- $E^{\infty}:=\pi^{-1}(\mathcal{O})$ is a p-subgroup of $E\left(R_{k}\right)$;
- all points $P \in E^{\infty}$ are in the second standard form, i.e. $P=(X: 1: Z)$, with $\epsilon \mid X, Z$;
- for non-anomalous curves (i.e. $\# E\left(\mathbb{F}_{p}\right) \neq p$) it holds

$$
E\left(R_{k}\right) \cong E\left(\mathbb{F}_{p}\right) \oplus E^{\infty} ;
$$

2 Subgroup at infinity

\checkmark We also define a projection $\pi: R_{k} \xrightarrow{\bmod \epsilon} \mathbb{F}_{p}$ sending

$$
\alpha+\epsilon \beta \mapsto \alpha ;
$$

the induced map $\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$ is a surjective group homomorphism;

- $E^{\infty}:=\pi^{-1}(\mathcal{O})$ is a p-subgroup of $E\left(R_{k}\right)$;
- all points $P \in E^{\infty}$ are in the second standard form, i.e.
$P=(X: 1: Z)$, with $\epsilon \mid X, Z$;
- for non-anomalous curves (i.e. $\# E\left(\mathbb{F}_{p}\right) \neq p$) it holds

$$
E\left(R_{k}\right) \cong E\left(\mathbb{F}_{p}\right) \oplus E^{\infty} ;
$$

- we restrict our attention to E^{∞}.

3 Outline

(1) Introduction

(2) Our setting
(3) Multiplication polynomials
(4) Consequences

3 Point sum

Proposition

There exist a polynomial $\mathrm{f} \in R_{k}[x]$ such that $x^{3} \mid \mathrm{f}$, and for every point $P=(X: 1: Z) \in E^{\infty}$ it holds $Z=\mathrm{f}(X)$.

3 Point sum

Proposition

There exist a polynomial $\mathrm{f} \in R_{k}[x]$ such that $x^{3} \mid \mathrm{f}$, and for every point $P=(X: 1: Z) \in E^{\infty}$ it holds $Z=\mathrm{f}(X)$.

Corollary
Given $P=\left(P_{x}: 1: P_{z}\right), Q=\left(Q_{x}: 1: Q_{z}\right) \in E^{\infty}$ it holds

$$
(P+Q)_{x} \in\left\langle P_{x}, Q_{x}\right\rangle
$$

In particular, $(n P)_{x} \in\left\langle P_{x}\right\rangle$.

3 Multiplication polynomials

As a consequence, for $P=(X: 1: \mathrm{f}(X))$ we can write

$$
(n P)_{x}=\sum_{i=1}^{k-1} \psi_{i}(n) X^{i}
$$

3 Multiplication polynomials

As a consequence, for $P=(X: 1: \mathrm{f}(X))$ we can write

$$
(n P)_{x}=\sum_{i=1}^{k-1} \psi_{i}(n) X^{i}
$$

Definition

The i-th multiplication polynomial is the unique function $\mathbb{N} \rightarrow R_{k}$ which sends n to $\psi_{i}(n)$.

3 Multiplication polynomials

As a consequence, for $P=(X: 1: \mathrm{f}(X))$ we can write

$$
(n P)_{x}=\sum_{i=1}^{k-1} \psi_{i}(n) X^{i}
$$

Definition

The i-th multiplication polynomial is the unique function $\mathbb{N} \rightarrow R_{k}$ which sends n to $\psi_{i}(n)$.

Remark

ψ_{i} is well defined as a function; it is not clear yet that this should be a polynomial in n.

3 Multiplication polynomials

Remark

It can be shown directly that $\psi_{1}(n)=n, \psi_{2}(n)=\binom{n}{2} a_{1}=\frac{n(n-1)}{2} a_{1}$.

3 Multiplication polynomials

Remark

It can be shown directly that $\psi_{1}(n)=n, \psi_{2}(n)=\binom{n}{2} a_{1}=\frac{n(n-1)}{2} a_{1}$.

Theorem (I. and Taufer, 2023)
$\psi_{i}(n)$ is a degree- i polynomial in $\mathbb{Q}\left[a_{1}, \ldots, a_{6}\right][n]$ with no constant term. Moreover, no primes greater than i appears in the denominators of $\psi_{i}(n)$.

4 Outline

(1) Introduction
(2) Our setting
(3) Multiplication polynomials
(4) Consequences

4 The jump

We fix p a prime number, $R_{k}=\mathbb{F}_{p}[\epsilon]$.
Corollary
For $i \leq p-1$,

$$
\psi_{i}(p) \equiv 0 \bmod p
$$

4 The jump

We fix p a prime number, $R_{k}=\mathbb{F}_{p}[\epsilon]$.
Corollary
For $i \leq p-1$,

$$
\psi_{i}(p) \equiv 0 \bmod p
$$

Proposition

Let $E\left(R_{k}\right)$ be a curve, $P \in E$. It holds

$$
(p P)_{x} \equiv \psi_{p}(p) X^{p} \bmod X^{p+1}
$$

4 Minimal degree

Definition

For a point $P=(X: 1: Z) \in E^{\infty}$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^{i} \mid X$.

4 Minimal degree

Definition

For a point $P=(X: 1: Z) \in E^{\infty}$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^{i} \mid X$.

Remark

For every $P \in E^{\infty}$ it holds $\nu(P) \geq 1$.

4 Minimal degree

Definition

For a point $P=(X: 1: Z) \in E^{\infty}$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^{i} \mid X$.

Remark

For every $P \in E^{\infty}$ it holds $\nu(P) \geq 1$.

Proposition

Let $P, Q \in E^{\infty}$. Then

- if $\nu(P) \neq \nu(Q), \nu(P+Q)=\min (\nu(P), \nu(Q))$;

4 Minimal degree

Definition

For a point $P=(X: 1: Z) \in E^{\infty}$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^{i} \mid X$.

Remark

For every $P \in E^{\infty}$ it holds $\nu(P) \geq 1$.

Proposition

Let $P, Q \in E^{\infty}$. Then

- if $\nu(P) \neq \nu(Q), \nu(P+Q)=\min (\nu(P), \nu(Q))$;
- if $p \nmid n, \nu(n P)=\nu(P)$;

4 Minimal degree

Definition

For a point $P=(X: 1: Z) \in E^{\infty}$ we define $\nu(P)$ as the minimal i s.t. $\epsilon^{i} \mid X$.

Remark

For every $P \in E^{\infty}$ it holds $\nu(P) \geq 1$.

Proposition

Let $P, Q \in E^{\infty}$. Then

- if $\nu(P) \neq \nu(Q), \nu(P+Q)=\min (\nu(P), \nu(Q))$;
- if $p \nmid n, \nu(n P)=\nu(P)$;
- $\nu(p P)=p \nu(P)$ (assuming $\left.\psi_{p}(p) \in R_{k}^{*}\right)$.

4 Group structure

Lemma

We obtain the following:

- $p P=\mathcal{O}$ if and only if $p \nu(P) \geq k$;

4 Group structure

Lemma

We obtain the following:

- $p P=\mathcal{O}$ if and only if $p \nu(P) \geq k$;
- $g_{i}:=\left(\epsilon^{i}: 1: \mathrm{f}\left(\epsilon^{i}\right)\right)$ for $(i, p)=1$ are \mathbb{F}_{p}-linearly independent.

4 Group structure

Lemma

We obtain the following:

- $p P=\mathcal{O}$ if and only if $p \nu(P) \geq k$;
- $g_{i}:=\left(\epsilon^{i}: 1: \mathrm{f}\left(\epsilon^{i}\right)\right)$ for $(i, p)=1$ are $\mathbb{F}_{p^{\prime}}$-linearly independent.

Theorem (I. and Taufer, 2023)

Let E be an elliptic curve over R_{k} s.t. $\# E\left(\mathbb{F}_{p}\right) \neq p$ and $\psi_{p}(p) \in R_{k}^{*}$. Then

$$
E \cong E\left(\mathbb{F}_{p}\right) \times \prod_{\substack{1 \leq m \leq k-1 \\(m, p)=1}} \mathbb{Z} / p^{l_{m}} \mathbb{Z}, \text { where } \quad l_{m}=\left\lfloor\log _{p} \frac{k-1}{m}\right\rfloor+1
$$

4 The ECDLP

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

4 The ECDLP

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

$$
Q_{x} \equiv a_{1} b_{0} \epsilon \bmod \epsilon^{2}
$$

4 The ECDLP

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

$$
Q_{x} \equiv a_{1} b_{0} \epsilon \bmod \epsilon^{2} \Rightarrow b_{0}=Q_{x}^{(1)} \cdot a_{1}^{-1}
$$

4 The ECDLP

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

$$
\left(Q-b_{0} P\right)_{x} \equiv a_{1}^{\prime} b_{1} \epsilon^{p} \bmod \epsilon^{p+1}
$$

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

$$
\left(Q-b_{0} P\right)_{x} \equiv a_{1}^{\prime} b_{1} \epsilon^{p} \bmod \epsilon^{p+1} \Rightarrow b_{1}=\left(Q-b_{0} P\right)_{x}^{(p)} \cdot\left(a_{1}^{\prime}\right)^{-1}
$$

4 The ECDLP

Let

$$
P_{x}=a_{1} \epsilon+a_{2} \epsilon^{2}+\cdots+a_{k-1} \epsilon^{k-1}
$$

and

$$
n=b_{0}+b_{1} p+b_{2} p^{2}+\cdots+b_{d} p^{d} .
$$

Suppose we know $P, Q=n P$ and want to recover n. Then:

4 The ECDLP

Theorem (I. and Taufer, 2023)
It holds

$$
b_{i}=\left(\left(Q-\sum_{j=1}^{i-1} b_{j} p^{j} P\right)_{x} \bmod \epsilon^{m_{i}+1}\right) /\left(\left(p^{i} P\right)_{x} \bmod \epsilon^{m_{i}+1}\right),
$$

where $m_{i}=\nu\left(p^{i} P\right)$. Over E^{∞}, the discrete logarithm can hence be solved in time $\mathcal{O}(\log (p) \log (n))$. As a consequence, the discrete logarithm over $E\left(R_{k}\right)$ can be efficiently reduced to the corresponding logarithm over $E\left(\mathbb{F}_{p}\right)$.

Thank you for your attention.

