

Multiplication Polynomials for Elliptic Curves over Finite Local Rings

Riccardo Invernizzi Daniele Taufer KU Leuven

Notation & standard results

We work on $R_k = \mathbb{F}_q[x]/(x^k) \cong \mathbb{F}_q[\varepsilon]$, where $q = p^e$ and p is a prime. R_k has one maximal principal ideal $\mathfrak{m} = (\varepsilon)$, with $\varepsilon^k = 0$. An elliptic curve $E(R_k)$ is the set of points $P = (X : Y : Z) \in \mathbb{P}_2(R_k)$ satisfying $v^{2}z + a_{1}xvz + a_{3}vz^{2} = x^{3} + a_{2}x^{2}z + a_{4}xz^{2} + a_{6}z^{3};$ every point in E can be written as $P = (\alpha_x + \varepsilon \beta_x : \alpha_v + \varepsilon \beta_v : \alpha_z + \varepsilon \beta_z)$, and the standard projection

Group Structure

Corollary: Let $P = (X : 1 : f(x)) \in E^{\infty}$ be a point, and p a prime number. Then $(pP)_{\scriptscriptstyle X} \equiv \psi_p(p) X^p \pmod{X}^{p+1}.$

 $\pi: E(R_k) \to E(\mathbb{F}_q) \quad (\alpha_x + \varepsilon \beta_x : \alpha_v + \varepsilon \beta_v : \alpha_z + \varepsilon \beta_z) \mapsto (\alpha_x : \alpha_v : \alpha_z)$ is a surjective group homomorphism.

Points over \mathcal{O}

 $E^{\infty} := \pi^{-1}(0:1:0)$ is a *p*-subgroup of $E(R_k)$ with q^{k-1} elements. Every $P \in E^{\infty}$ can be written as P = (X : 1 : Z). Under broad assuptions it holds $E(R_k) \cong E(\mathbb{F}_a) \oplus E^{\infty}$. **Proposition:** Let $P = (P_x : 1 : P_z) \in E^{\infty}$ be a point. There is a polynomial $f \in R[x]$ such that $P_z = f(P_x)$; moreover $x^3 | f$. **Corollary:** If P and Q are mulitple of a same point (X : 1 : Z) and R = P + Qthen $R_x \in \langle X \rangle$.

Proposition: Let E be an elliptic curve over R_k where $k \leq p$. Then we have the group isomorphism

 $E^{\infty}\cong (\mathbb{F}_{p})^{e(k-1)}.$

Definition: Let $r \in R_k \setminus \{0\}$. We define its *minimal degree* v(r) as the maximal $i \ge 0$ such that $\varepsilon^i | r$. We also define $v(0) = \infty$. Finally, for every point $P \in E^{\infty}$, we define $v(P) = v(P_x)$. If $v(P) \neq v(Q)$ then $v(P+Q) = \min\{v(P), v(Q)\}$. Moreover, if $p \nmid n$, then v(nP) = v(P). Finally, if we assume $\psi_p(p) \in R_k^*$, then we have $v(p^i P) = p^i v(P)$.

Proposition: For every $1 \le m \le k-1$, if $P \in E^{\infty}$ has minimal degree m = v(P), then its order is

$$ord(P) = p^{I_m}$$
, where $I_m = \left| \log_p \frac{k-1}{m} \right| + 1$.

Theorem: Let *E* be an elliptic curve over R_k , such that $\psi_p(p) \in R_k^*$. Then

$$E^{\infty} \cong \prod_{\substack{1 \leq m \leq k-1 \ (m,p)=1}} \left(\mathbb{Z}_{p^{l_m}} \right)^e.$$

Multiplication Polynomials

Given a curve *E* on R_k , for every $n \in \mathbb{N}$ there are uniquely defined coefficients $\psi_1(n), \ldots, \psi_{k-1}(n) \in R_k$ such that for every point P = (X : 1 : x) it holds

 $(nP)_{X} = \sum_{i=1}^{\kappa-1} \psi_{i}(n) X^{i}.$

The *i* – *th* **multiplication polynomial** is ψ_i as a function $\mathbb{N} \to R_k$. **Remark:** By definition, $\psi_i(1) = 0$ for all $i \ge 2$. $\psi_1(n) = n$ and $\psi_2(n) = {n \choose 2}a_1$ can be shown easily.

Theorem: For every $1 \le i \le k - 1$, the *i*-th multiplication polynomial ψ_i is a polynomial in $\mathbb{Q}[a_1, \ldots, a_n][n]$ of degree *i* in *n*; moreover, $n|\psi_i(n)$. **Theorem:** No primes greater than *i* appear in the factorization of the denominator of $\psi_i(n)$.

Corollary: Let p be a prime number. For every $l \ge 1$ and $1 \le i < p$ it holds

The ECDLP

Given the coordinates of a point $P \in E$ and those of its multiple Q = nP, the **discrete logarithm problem** amounts to efficiently compute such $n \in \mathbb{Z}$. From the results of the current paper, we efficiently recover the discrete logarithm of points in E^{∞} over R_k . In fact, we can always write $n = b_0 + b_1 p + \cdots + b_{k-1} p^{k-1}$. Let $m_i = v(p^i P)$. Our results on multiplication polynomials imply

 $b_i = \left(\left(Q - \sum_{j=1}^{i-1} b_j p^j P \right)_x \mod \varepsilon^{m_i+1} \right) \Big/ ((p^i P)_x \mod \varepsilon^{m_i+1}).$

We compute the log(n) digits b_i of n with two point multiplications (log(p))operations) at each step. Hence, the whole algorithm has a time complexity of log(p)log(n). We reduce the discrete logarithm problem over R_k to the corresponding problem over \mathbb{F}_q .

