Multiplication Polynomials for Elliptic Curves over Finite Local Rings

Riccardo Invernizzi Daniele Taufer

KU Leuven

Notation \& standard results

We work on $R_{k}=\mathbb{F}_{q}[x] /\left(x^{k}\right) \cong \mathbb{F}_{q}[\varepsilon]$, where $q=p^{e}$ and p is a prime. R_{k} has one maximal principal ideal $\mathfrak{m}=(\varepsilon)$, with $\varepsilon^{k}=0$.
An elliptic curve $E\left(R_{k}\right)$ is the set of points $P=(X: Y: Z) \in \mathbb{P}_{2}\left(R_{k}\right)$ satisfying

$$
y^{2} z+a_{1} x y z+a_{3} y z^{2}=x^{3}+a_{2} x^{2} z+a_{4} x z^{2}+a_{6} z^{3}
$$

every point in E can be written as $P=\left(\alpha_{x}+\varepsilon \beta_{x}: \alpha_{y}+\varepsilon \beta_{y}: \alpha_{z}+\varepsilon \beta_{z}\right)$, and the standard projection

$$
\pi: E\left(R_{k}\right) \rightarrow E\left(\mathbb{F}_{q}\right) \quad\left(\alpha_{x}+\varepsilon \beta_{x}: \alpha_{y}+\varepsilon \beta_{y}: \alpha_{z}+\varepsilon \beta_{z}\right) \mapsto\left(\alpha_{x}: \alpha_{y}: \alpha_{z}\right)
$$

is a surjective group homomorphism

Points over \mathscr{O}

$E^{\infty}:=\pi^{-1}(0: 1: 0)$ is a p-subgroup of $E\left(R_{k}\right)$ with q^{k-1} elements. Every $P \in E^{\infty}$ can be written as $P=(X: 1: Z)$.
Under broad assuptions it holds $E\left(R_{k}\right) \cong E\left(\mathbb{F}_{q}\right) \oplus E^{\infty}$.
Proposition: Let $P=\left(P_{x}: 1: P_{z}\right) \in E^{\infty}$ be a point. There is a polynomial $\mathrm{f} \in R[x]$ such that $P_{z}=\mathrm{f}\left(P_{x}\right)$; moreover $x^{3} \mid \mathrm{f}$
Corollary: If P and Q are mulitple of a same point $(X: 1: Z)$ and $R=P+Q$ then $R_{x} \in\langle X\rangle$.

Multiplication Polynomials

Given a curve E on R_{k}, for every $n \in \mathbb{N}$ there are uniquely defined coefficients $\psi_{1}(n), \ldots, \psi_{k-1}(n) \in R_{k}$ such that for every point $P=(X: 1: \mathrm{x})$ it holds

$$
(n P)_{x}=\sum_{i=1}^{k-1} \psi_{i}(n) X^{i}
$$

The $i-$ th multiplication polynomial is ψ_{i} as a function $\mathbb{N} \rightarrow R_{k}$
Remark: By definition, $\psi_{i}(1)=0$ for all $i \geq 2 . \psi_{1}(n)=n$ and $\psi_{2}(n)=\binom{n}{2} a_{1}$ can be shown easily.
Theorem: For every $1 \leq i \leq k-1$, the i-th multiplication polynomial ψ_{i} is a polynomial in $\mathbb{Q}\left[a_{1}, \ldots, a_{n}\right][n]$ of degree i in n; moreover, $n \mid \psi_{i}(n)$.
Theorem: No primes greater than i appear in the factorization of the denominator of $\psi_{i}(n)$.
Corollary: Let p be a prime number. For every $I \geq 1$ and $1 \leq i<p$ it holds $\psi_{i}\left(p^{\prime}\right) \equiv 0 \bmod p^{\prime}$.

Group Structure

Corollary: Let $P=(X: 1: f(x)) \in E^{\infty}$ be a point, and p a prime number. Then $(p P)_{x} \equiv \psi_{p}(p) X^{p} \quad(\bmod X)^{p+1}$.
Proposition: Let E be an elliptic curve over R_{k} where $k \leq p$. Then we have the group isomorphism

$$
E^{\infty} \cong\left(\mathbb{F}_{p}\right)^{e(k-1)} .
$$

Definition: Let $r \in R_{k} \backslash\{0\}$. We define its minimal degree $v(r)$ as the maximal $i \geq 0$ such that $\varepsilon^{i} \mid r$. We also define $v(0)=\infty$. Finally, for every point $P \in E^{\infty}$, we define $v(P)=v\left(P_{x}\right)$.
If $v(P) \neq v(Q)$ then $v(P+Q)=\min \{v(P), v(Q)\}$. Moreover, if $p \nmid n$, then $v(n P)=v(P)$. Finally, if we assume $\psi_{p}(p) \in R_{k}^{*}$, then we have $v\left(p^{i} P\right)=p^{i} v(P)$.

Proposition: For every $1 \leq m \leq k-1$, if $P \in E^{\infty}$ has minimal degree $m=v(P)$, then its order is

$$
\operatorname{ord}(P)=p^{I_{m}}, \quad \text { where } \quad I_{m}=\left\lfloor\log _{p} \frac{k-1}{m}\right\rfloor+1
$$

Theorem: Let E be an elliptic curve over R_{k}, such that $\psi_{p}(p) \in R_{k}^{*}$. Then

$$
E^{\infty} \cong \prod_{\substack{1 \leq m \leq k-1 \\(m, p)=1}}\left(\mathbb{Z}_{p^{\prime} m}\right)^{e}
$$

The ECDLP

Given the coordinates of a point $P \in E$ and those of its multiple $Q=n P$, the discrete logarithm problem amounts to efficiently compute such $n \in \mathbb{Z}$.
From the results of the current paper, we efficiently recover the discrete logarithm of points in E^{∞} over R_{k}. In fact, we can always write $n=b_{0}+b_{1} p+\cdots+b_{k-1} p^{k-1}$ Let $m_{i}=v\left(p^{i} P\right)$. Our results on multiplication polynomials imply

$$
b_{i}=\left(\left(Q-\sum_{j=1}^{i-1} b_{j} p^{j} P\right)_{x} \bmod \varepsilon^{m_{i}+1}\right) /\left(\left(p^{i} P\right)_{x} \bmod \varepsilon^{m_{i}+1}\right)
$$

We compute the $\log (n)$ digits b_{i} of n with two point multiplications $(\log (p)$ operations) at each step. Hence, the whole algorithm has a time complexity of $\log (p) \log (n)$. We reduce the discrete logarithm problem over R_{k} to the corresponding problem over \mathbb{F}_{q}.

